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Abstract: The purpose of this article is to perform a comparative study of a reversible heat engine
with an ideal or real gas as a working fluid and to determine the change in its efficiency
depending on the thermodynamic characteristics of the working fluid. The main research method
is the method of thermodynamic potentials, based primarily on the analysis of changes in the free
and internal energy of an ideal and real gas in a cyclic process. The theory of thermodynamic
potentials is used to consider the Carnot quasistatic heat engine. A comparative analysis of its
operation is carried out, for a cycle with both an ideal and a real gas as a working fluid. The
possibility of analyzing cyclic processes occurring in heat engines using the method of
thermodynamic potentials has been identified and substantiated. The study has shown that the
existing formulation of the Carnot’s theorem is valid only for ideal gas as a working fluid. Based
on the work carried out, the Carnot’s theorem in the general case can be formulated, for example,
as follows: the efficiency of the heat engine nr, when it operates at the reversible Carnot cycle with
real gas as a working fluid, is determined by the following expression:
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where Tp and Tg are the temperatures of the upper and lower isotherms of the Carnot cycle,

respectively; € is the correction term (positive or negative), depending on the thermodynamic
properties of a real gas, which tends to zero as the properties of a real gas approach the
properties of an ideal gas.
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MEPMOOUHAMUYECKUX Xapakmepucmuk paboueco menda. OCHOBHLIM MeMOOOM UCCAEO08AHUS
AGNACNC MEMOO MEPMOOUHAMUYECKUX NOMEHYUATIO8, OAZUPYIOWUTICS, NPedicOe 6Ce20 HA aHANU3e
U3MeHeHUsL C606OOHOU U GHYMPEHHell IHEPIUU UOEAbHO20 U PEabHO20 2A3d 8 YUKIUYECKOM
npoyecce. B cmamve Ha OCHOBe meopuu MeEPMOOUHAMUYECKUX HOMEHYUALO8 NPOU3EEOeHO
paccmompenue  Keasucmamuieckozo mennogoco odgucamens Kapro, 6 pamkax Komopoeo
ocyujecmener CpasHUMeNbHbIl AHAIU3 €20 pabomyl, KaK 05l YUKLA ¢ pabodum meiom UoedibHbolll
2az, mak u ONs YuKia ¢ pabouum menoM pedaivhuvlil 2asz. B pabome evisigrena u obochosana
B03MOJICHOCHIb  AHANU3A YUKIUYECKUX NPOYECCo8, NPOMEKAUUX 6 Menio8bix O08Ueamensix ¢
UCNONL30BAHUEM MemoOd MePpMOOUHAMUYecKUx nomenyuanos. Ha ocnoge npogedénnoco
UCCNIeO08AHUS YCMAHOBGIEHO, YO CYWECmeyiowas opmyrupoeka meopemsi Kapno cnpaseonusa
moavbko Ol paboyeco mena «udeanvHvill 2azy. B obwem ciyuae, HA OCHOBAHUU NPOGEOEHHOU
pabomvi, meopema Kapno moocem Ovimb chpopmyruposana, Hanpumep, CieOVIOWUM 00pA30M:
KO uyuenm nonesHo2o Oelucmeuss Meniosou MAuluHbl 1y, Npu e€ QYHKYUOHUPOBAHUU NO
obpamumomy yuxiy Kapno c¢ pabouum meniom peanvHulli 2a3, Onpeoensiemcs ciedyiowell
Gopmynou:
Nr =1—T—B+8,
TA
20e Tp u Tg — memnepamypa, cOOmeemcmeeHHo, 6epxuell u nudjicreti usomepm yuxia Kapmo; €

— nonpaexka (nOJZOJfCMm@ﬂbH(l}Z uau ompuuameﬂbHaﬂ), 3asuciauas om mepMOdquMMUQCKMx
ceoticmes peailbHoco 2asa, Komopas Cmpemumcs K HY10 npu npu6/zu9fceHuu ceoticms peailbHoco
2a3a K C80UCMBam 2a3a UdeaibHO20.

Knrouegvie cnoea: menioeou oguzamens, mepmoouHamuieckue nomeHyuansl;
xapaxmepucmuueckue Qyuxyuu, suepeus I'uboca, suepeus I'enomeonvya; meopema Kapno, yuxn
Kapno; keasucmamuyeckuii npoyecc; oopamumsiii yuxkiuveckuu npoyecc, KIIJ[ yuxia Kapno;
KIIJ] mennogvix 0gucameneii; Kodgduyuenm noiezHo2o 0eticmeus.

Introduction

In a number of previous publications [1, 2, 3], the author used the method of
thermodynamic potentials [4, 5] to analyze the simplest thermodynamic processes (mixing of ideal
gases and isothermic equilibrium and non-equilibrium expansion of an ideal gas). This work
explores the behavior of real gas in thermodynamic cycles and the influence of its properties on
the efficiency of heat engines basing on the basic principles underlying the earlier publications. It
should be noted that application of the theory of thermodynamic potentials to the “ideal gas
mixture” system was a key factor in the appearance of an article entitled “The Gibbs Paradox and
its Solution” [1]. So, the author poses the second task of the present work: to indirectly confirm the
basic principles underlying this earlier publication. It should be noted that this problem is very
actively discussed as a matter of modern thermodynamics, as evidenced, in particular, by the
following works [6-10].

In accordance with 1. Prigogin [11, p. 81], “Carnot showed that a reversible cyclic heat
engine must perform the maximum work (driving force) ...”. Later he [11, p. 81] reports: “If any
heat engine could perform more work than a reversible cyclic engine, then an infinite amount of
work could be done. First, using a more efficient engine, it was necessary to transfer heat from the
hot tank to the cold, then, using a reversible heat engine, return the same amount of heat to the hot
tank. Since the direct process gives more work than it is required to complete the reverse process,
the result is a gain in work. ... Carnot argued that this was impossible.”" Note that in this discussion
there is a substitution of concepts. In fact, Carnot actually speaks only of volumetric-mechanical
work (and only about it), into which the heat supplied to the system is converted (or vice versa, the
work is converted to heat), and this phenomenon is observed only when a heat engine with an ideal
gas as working fluid is used. At the same time, “Joule and Thomson showed that the vast majority
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of gases studied by them are cooled during free expansion, since such expansion is associated with
work against the internal forces of interaction between gas particles” [12, p. 35]. There is the
possibility of heating real gases during expansion [p* . 249], however, an increase in gas
temperature is a rather rare phenomenon, therefore, in the framework of this work we mainly
restrict ourselves to considering the first case. Thus, when using non-ideal gas as a working fluid
in the upper Carnot isotherm, the heat supplied to the system is spent both on the performance of
volumetric-mechanical work and on maintaining a constant temperature of the “self-cooling” gas.
As a result, the isotherm of the real gas will be below the isotherm of the ideal gas [13, p. 22],
which should be interpreted as the presence of some internal compressive pressure of real gas.
This thesis is illustrated by Fig. 1 "Isotherms for ideal (1) and real (2) gases."

Thus, it can be stated that under isothermal expansion of one mole of a real gas at relatively
low pressures (when its volatility coefficient is less than one), the work performed by it will be
less than that performed by one mole of an ideal gas at the same pressure change. This is driven by
the fact that part of heat received by the non-ideal gas from the hot tank will be spent on
maintaining its temperature, which is necessary for an isothermal process due to the presence of its
"self-cooling" effect, that is, it is spent on chemical work against the Van der Waals forces. A
similar situation, except for the sign, is also observed for the lower isotherm of the Carnot cycle. In
this case, attraction of real gas molecules to each other takes place, so when it is compressed by
external forces, in addition to heat generated due to mechanical work (as it is observed, for
example, for an ideal gas) its self-heating occurs due to strengthening of Van der Waals bonds.
So, in this case the chemical work will be performed by the substance itself. This leads to
increased, in comparison with the amount of volumetric-mechanical work performed, heat transfer
to the refrigerator of the system in question. In addition, we note that it is necessary to take into
account the internal energy of a real gas, the change of which actually determines the volumetric-
mechanical work of adiabats of the Carnot cycle. It is known that in the general case it depends on
the volume of real gas [11, p. 163] and, therefore, the volumetric-mechanical work performed in
adiabats (by the system and being done on the system) in this case is not subject to reduction. So it
can be argued that when carrying out the Carnot cycle with the participation of real gas, along with
the use of heat for performing volumetric-mechanical work, it is also used for performing chemical
work, which has an influence on the system efficiency. This phenomenon will be considered in
more detail in subsequent sections of this work. In addition, it should be noted that there are no
doubts that the considered effects and their values depend on the type of reversible heat engine
(thermodynamic cycle), which requires analysis of this factor, but is clearly beyond the scope of
this work.

PA

Fig. 1. Isotherms for ideal (1) and real (2) gases
We now return to the Carnot’s theorem itself. Its traditional formulation, given, for
example, in the monograph by I. Prigogin [11, p. 83], states that the discovery of Carnot “... comes

! Yavorsky B.M. CrpaBounuk o (usnke: cnpaodrnk / B.M. Yavorsky, A.A. Detlaf. Moscow:
Nauka, 1974. (In Russ).
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down to the statement that the efficiency of a reversible heat engine is maximum, does not depend
on the properties of the heat engine and is a function of only the temperatures of the hot and cold
tanks:

n=1- 2 =1-f(y,ty) )
Q2
where f(t,ty) are the function of only temperatures t; and ty of hot and cold tanks.”

Earlier we showed that in the case of real gas this statement is not true. Therefore, the
aforecited conclusion of the Carnot’s theorem should be attributed exclusively to the working fluid
“ideal gas”. In case of a real gas, expression (1) becomes simply incorrect, since there appears
relationship between n and the gas properties. In the following sections of this article, we show

the validity of the stated thesis using specific examples.

Materials and methods

Analysis of the work of the Carnot thermodynamic cycle with the “ideal gas” working fluid
can be found in almost any course of thermodynamics. Therefore, we will use one of the variants
for studying this issue, basing, for example, on the monograph of I. Prigogin [11, pp. 83-86].
Together with it, we will use the method proposed by the author and presented, in particular, in his
work, “Philips and Carnot Heat Engines from the Point of View of the Theory of Thermodynamic
Potentials” [3].
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Fig. 2. Carnot cycle in P-V coordinates for ideal and real gas

Fig. 2 shows a graph of the cyclic operation of the Carnot machine in pressure-volume
coordinates for one mole of ideal gas and one mole of real gas. Moreover, without loss of
generality, it is accepted that the right adiabats and the right parts of isotherms of thermodynamic
cycles of real and ideal gases coincide. In other words, the real gas in this case becomes ideal.
Using this technique allows us to consider any Carnot cycle with the participation of the real gas

35



© B.I". Kucenées

a—ab-dc—d as the difference of two Carnot cycles ("large” a—b—c—d and "small" ab—b —
¢ —dc), in which, in their right part, the expansion of real gas is so significant that it becomes an
ideal gas. An explanation of this thesis is presented in Fig. 3. In addition, in order to simplify
further calculations, we assume that the device under consideration, operating with either ideal or
real gas, is in vacuum, and to analyze its operation we use the theory of thermodynamic potentials,
assuming that only one mole of gas is always used in the system.

Stage 1. Isothermal transitions at temperature Ta.

Ideal gas. Transition A - B.

In this case, in accordance with I. Prigogin [11, p. 84], external work performed by one
mole of ideal gas A,g is determined by the expression

B VB
= = _— 2
Ang = [, PdV =RTp |nVA, )
where P is the gas pressure; V is the current gas volume; Va and Vg are the ideal gas volumes
at the beginning and at the end of the upper isotherm of the Carnot cycle, respectively; Tp is the

gas temperature of the upper isotherm of the Carnot cycle, R is the universal gas constant.
When using pressure as an independent variable, the last expression can be rewritten [14, p.
22] in the following form:

B PB
Anp = P=—RTxIn-2, 3
'AB jﬂ vd Aln P ©)
where Py and Pg are the ideal gas pressures at the beginning and at the end of the upper isotherm

of the Carnot cycle, respectively.
In such an isothermal process involving an ideal gas, heat Qg is absorbed from the

reservoir, and the following equality is fulfilled:
Ang =QnaB - 4)

PA

Fig. 3. The scheme of transformation of Carnot cycles with real gas as a working fluid

Real gas. Transition a - b.
In this case, external work performed by real gas A,y is determined by the ratio [14, p. 22]

b fb
Agh :_[anPz—RTAInf—a (5)
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where fy and fy, are the volatilities of real gas at the beginning and end of the upper isotherm of
the Carnot cycle, respectively.

Further, the difference between the volumetric-mechanical work of a real gas A,y and
the volumetric-mechanical work of an ideal gas Ajgeg Will be a certain amount A g, which N.

Izmailov calls the excessive work of expansion and is determined [13, p. 22], with the system of
signs adopted by us, as follows :

Pa
Apg =RTp Inf_A = Aideal ~ Areal » (6)
where Ajgeql is the isothermal work performed by ideal gas when expanding from pressure P, to

pressure Py, Ayeg IS the isothermal work performed by real gas when expanding from pressure
Pa , corresponding to volatility f, to pressure Pg, at which the real gas becomes an ideal one.

In this case, it can be stated (see Fig. 2) that heat received by the system with real gas
(when volatility coefficient is less than one) is consumed both for performing external work Agp
and for working against internal pressure forces A g, i.e., the mutual attraction of gas particles. It
should be noted that in the a - b isotherm the amount of heat absorbed by the real gas Qg remains
unchanged, that is, it is equal to the heat absorbed by the ideal gas Q,g in the isotherm A - B.

Thus, for the upper isotherm of the Carnot cycle with alternating participation of the real and ideal
gas it can be written:

QaB =Qab- ()

AnB — Aab =Apg > 0. (8)

Stage 2. Adiabatic transition.

Ideal gas. Transition B - C.

It is known that the only source of energy for performing external work Agc , under
adiabatic expansion of an ideal gas, is a change in its internal energy AU [14, p. 42]. Therefore, in
this case, we can write

—AU =C,(Ta —Tg) = AgC - 9)
where C,, is the heat capacity of an ideal gas at a constant pressure, and Tg is the gas temperature
in the lower isotherm of the Carnot cycle.

Due to the preconditions imposed on the considered Carnot cycles, an analysis of the
adiabatic transition b - ¢ for a real gas is not required (all its parameters coincide with the
parameters of an ideal gas), i.e. in particular Agc = Ay

At the same time, for further research, we need to know the characteristics of an ideal gas at
the moment of the end of the right adiabat at a temperature Tg (the beginning of the “lower”
isotherm of ideal and real gas). For this purpose, the transition from point B to point C is carried
out in two stages. In the first case, we move at a constant volume of ideal gas from point B to point
B’ located on the lower isotherm of the Carnot cycle, which will lead to a corresponding change in
its internal energy [3]:

—AUgg' =C,(Tao —Tg)- (10)

The heat released as a result of this process we will direct to a battery, which has a
temperature Tg . It should be noted that the volumetric-mechanical work in this case, due to the
constancy of the volume of gas, is zero. The further transition of one mole of ideal gas is carried
out along the isotherm from point B’ to point C. In this case, as we found out earlier, the external
work performed is limited by the amount of heat supplied to the system and going to actually carry
out this work (in our case, the amount of heat released as a result of a decrease in internal energy).
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Thus, we can write [13, p. 22], taking into account the isothermal equivalence of the Helmholtz
and Gibbs energy changes, the following expression:

C VC PC
=Agc =|_PdV =RTgIn—==—-RTg In—. 11
Asc =Ag'c IB. v sl (11)
In this case, a combination of equations (10) and (11) allows one to determine the values
V¢ and Pe corresponding to the volume and pressure of an ideal gas at point C of the lower

isotherm. Indeed, from these expressions it follows that

V, R

~C —_RTgIn-C . (12)
Vg: Pg:
In these two equations, only V¢ and Pc are unknown. In turn, the external work Agc or

CV(I'A —TB) = RTB In

Ay of the considered system during its adiabatic transition from point B to point C will be equal
to:
Asc =P =G (Ta—Tp)- (13)
Stage 3. Isothermal transitions at temperature Tg .
Ideal gas. Transition C - D.
We will consider this process by analogy with stage 1.

In this case, in accordance with I. Prigogin [11, p. 85], external work (negative) performed
on an ideal gas is determined by the expression

D VD
= = —. 14
Acp = [ PdV =RTgIn v (14)

When using pressure as an independent variable, the last relation can be rewritten [13, p.
22] in the following form:

Ach :J'CDVdP:—RTB |ni—fc’. (15)
In such an isothermal process involving an ideal gas, heat Qcp is transferred to the
refrigerator, and the following equality is fulfilled:
Acp =Qcp - (16)
Real gas. Transition ¢ - d.
In this case, external work (negative) Acq performed on real gas is determined by the
equation
Acg = [ PV =RTg In\\//—‘i . (17)
When using pressure as an independent variable and volatility f , the last relation can be
rewritten [13, p. 22]:
Acq =I:VdP:—RTB In];—(iz—RTB In;—i. (18)
In turn, the difference between the values of the work of the real and ideal gases will be a
certain amount Acp (negative), which N. lzmailov calls the excess work of expansion and is
determined in this case [13, p. 22] as follows:

ACD =—RTB In;thCD _Acd . (19)
d
Therefore, the heat Qcp generated by the system with real gas in the isothermal process ¢ —
d and transferred to the refrigerator can be decomposed into two components:
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—Heat received as a result of the actual transformation of mechanical work with the
participation of external forces acting on the system, and quantitatively equal to this work:

f
~RTg In-&;
PC
—Heat received as a result of work performed due to the attraction of molecules (Van der

Waals forces), which is equal to Acp .

Thus, it can be stated that in this case, external work is completely converted into heat;
moreover, heat is also generated due to the work caused by the forces of VVan der Waals.

Stage 4. Adiabatic transitions.

Perfect gas. Transition D - A.

In this subsection, we will use the results obtained by us when analyzing stage 2, which will
have opposite signs due to the fact that the process under consideration proceeds in the opposite
direction. All necessary explanations can be obtained from the analysis of Fig. 2: it can be seen
that the considered transition is divided into two parts: isothermal D - 4" and isochoric 4’ - A. It is
known that under adiabatic compression of an ideal gas, a change in its internal energy is
numerically equal to the volumetric-mechanical work performed on it [14, p. 42]. Therefore, in
this case, an increase in internal energy is observed, and the following relation can be written:

AUpp =G, (TA—Tg) =—Apa- (20)

Thus, for transition D - A, given the the Helmholtz and Gibbs energies change equivalence

in this case, we can write [15, p. 42]:
_ _ Apgy = Va _ P
Apa = App = [ PdV =RTg In v = RTe In o (21)

The combination of the last two equations allows one to determine Vp and Pp,
corresponding to the volume and pressure of an ideal gas at point D of the lower isotherm. Indeed,
from these equalities it follows that

—C,(Tao-Tg)=RTg In\$:—RTB In%. (22)
D

In turn, from the latter expressions one can easily calculate the considered values Vp and
Pp by means of simple algebraic transformations.

Real gas. Transitiond - a

We will analyze this process by analogy with the D - A transition, replacing the
corresponding pressures by volatilities, and the molar volumes of an ideal gas by molar volumes of
real gas. All necessary explanations can be obtained by analyzing Fig. 2, from which it can be seen
that the transition under consideration is divided into two parts: the isothermal d - ' and the
isochoric a’- a.

It is known that during adiabatic compression of gas, a change in its internal energy is
numerically equal to the volumetric-mechanical work performed on it [14, p. 42]. Therefore, in
this case, an increase in internal energy is observed, and the following relation can be written:

AUga =Cr(TA—Tg) =—Aya (23)
where C; is the heat capacity of real gas at a constant volume Vg , which in general case can be a
function of both temperature and volume. In our discussions, without loss of generality, in order to
simplify the analysis, we accept it depending only on the real gas volume. As for the previous

discussions, the volumetric-mechanical work is concentrated in the section d - a’, and accordingly
it is equal to zero in the section a' - a. Then, taking into account the comments made, we get:

Ada :Ada' :J-a PdVv =RTAIn\£=—RTA |n£ (24)
d Vd fd
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The last two equations allow, using simple algebraic transformations, to calculate the
parameters of the real gas Vg and fq at the point d.

3. Results and discussion

3.1 Efficiency of the Carnot cycle with ideal gas

In accordance with I. Prigogin [11, p. 86], the efficiency of the Carnot cycle with an ideal
gas 7; is determined by the formula

v T,
m=o1- B, (25)
QnB Ta
where A is the total amount of work produced by the considered system.

We show that the results we obtained in the previous paragraph using the method of
thermodynamic potentials coincide with the latter formula. To do this, we use fig. 2. The amount
of heat entering the system in our case, as well as in the usual version of analysis of this process, is
equal to Qg and equals to work performed at this stage Aag .

To determine the work on the adiabat B - C, one can use the results of the previous
paragraph (stage 2). In this case, the third-external work performed by the system is
“concentrated” on the isotherm with temperature Tg and is determined by the following

expression:
Agc =Cy(Ta-Tg)- (26)
A similar situation, except for the sign, is observed when considering the transition along
the adiabat D - A. External work performed on the system is concentrated on the isotherm with
temperature Tg and is determined in this case by the formula

Apa =-Cy(Ta-Tg) =—Agc - @7)
Thus, the total work performed on the upper isotherm and two adiabats, i.e., on the section
D-A-B-C, will be equal to

Apaec = AnB + Aec + ApA- (28)
However, knowing that
Apa=—Pgc (29)
we obtain
\:!
Apasc =Aag =RTaIn vy (30)

It is known that for negative external work performed on the lower isotherm of the Carnot
cycle, we can write:

v
Acp =RTg ln%- 31)

In addition, consideration of the geometry of Fig. 2 allows us to state that the following
equality is true

InYB _p VB (32)

Va  Va
At the same time, taking into account the fact that on the lower isotherm the same amount
of work, determined by expression Agc =—Apa =C,(Tpo—Tg) is added and subtracted to the

Vg . , . .
work Aa'g' =RTg Invi, it becomes possible to assert that its value remains unchanged and,
A
therefore, the following relation is true:
' V
RTgIn B —RT5InYC. . (33)
Va' Vb
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And finally, compiling the last equation with the previous one, we get
V V,
B =In Yc .
Va Vb

Taking into account the last three expressions and substituting the expressions for work
Acp and Apppc into the expression that determines the efficiency of an ideal gas allows us to

obtain the following formula:

In (34)

RTA InV—B + RTB InV—D

m=——A Y18 (3)
RTAIn B Ta
Va
This expression for the Carnot cycle efficiency completely coincides with a similar relation
obtained in traditional way [1, p. 86], which confirms the correctness of the method of
thermodynamic potentials for solving the problems under consideration. In the next subsection of
this publication, we complicate the task somewhat by applying the method of thermodynamic

potentials to analyze the efficiency of the Carnot cycle with the “real gas” working fluid.

3.2. Efficiency of the Carnot cycle with real gas

In case of Carnot cycle with a “real gas” working fluid, its efficiency M, can be calculated

using a formula similar to the corresponding formula for an ideal gas:
=2 (36)

Qab

However, the expression for the work, we denote it here Ay, will look somewhat different,
since we have to use the concept of volatility instead of pressure in these calculation, and instead
of the ideal gas volume, we use the real gas volume. In this case (see Fig. 2), the determination of
the cycle efficiency can be carried out using the technique used in the previous paragraph of this
paper. As before, we assume that the amount of heat Qgp, is equal to heat entering the system.

And, in turn, the work performed by the system in the section a - b will be determined by the
formula

Agp = RTAan—b:—RTAlnh. 37)
Va fa
Note that in this case, in accordance with the analysis carried out in Paragraph 4, Ayp and

Qap and are not equal to each other. To determine the work Ay in section b - ¢ from point b of

the upper isotherm along the isochore, we descend to the intersection with the lower isotherm at
point b’, and then we move along the lower isotherm to point c. Then the total work on the section
b - 5’ - c, due to the constancy of the volume, on the isochore will be concentrated on the segment
b’ - c and is equal to the following value:

Abb'C = Ab'C = RTB |nV—C = —RTB |nL = —RTB |ni = CV(TA —TB) . (38)
Vo fo: Ry

Note that according to the terms of the problem, the properties of ideal and real gases
coincide in this area, and the corresponding heat capacities are equal to each other. At the same
time, the solution of the latter relation relative to f., P, and V; allows one to determine the

properties of the considered gas at point c.

To determine the point d - the end of the lower isotherm of the Carnot cycle - we use the
following technique. From point a of the upper isotherm a - b, along the isochor a - a’ we descend
to the point a’ located on the continuation of the lower isotherm ¢ - d, and then move along the
isotherm a’- c to point d.
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In fact, in the Carnot cycle, the movement along the adiabat under consideration proceeds
in the opposite direction, which requires appropriate consideration by setting the signs in the
following formula:

Vyr far
Ada'a = Ada' = ~Aa'd =RTB “1% =-RTp |”ﬁ ==Cr(Ta-Tg)- (39)

where C, is the heat capacity of real gas, at a constant volume V .

We note that the solution of the last expression in relation to fy and Vg allows one to
determine the properties of a real gas at point c.

Thus, the total work performed on the upper isotherm and two adiabats, i.e., on the section
d-a-b-c, will be equal to:

Adabc = Pab + Ao'c + Ada (40)

However, due to the fact that in this case, for the adiabats b - ¢ and d - a, the heat capacities

are not equal to each other, i.e. C, =C,, s0

Avc #—Pda - (41)

Thus, based on the last two formulas, we obtain the expression:

Adabc = RTA|n\\%+ RTg In\\//—c+ RTg In\iz

! V,
a b d (42)

:—RTAlnE—RTB |nl—RTB Inta’,
fa fy fa
At the same time, taking into account the data from the previous paragraph, for work
(negative), which was performed on the system on the isotherm ¢ - d, we obtain the following
expression:

Ay = RTg InYd — _RTgIn19. . (43)
Ve fe
It is more convenient to present the last two ratios in the form
Vv V Var
Adabc = RTA In—B—AAB + RTB In—C —AB'C + RTB In—A —ADA', (44)
Va Vg Vp
\Y,
A =RTg InZB—Acp, (45)
Ve

where Aag, Ag'c, Apa' and Acp is the corresponding redundant expansion work, and
according to the conditions of the problem Ag:c =0.

Substitution of expressions for work Asq and Aggpc in expression that determines the
efficiency allows us to obtain the formula

RTAInV—B—AAB + RTB |nV7C—AB'C + RTB |n\£—ADA'
Va Ve: Vb

Nr = +
RTA Inx—B
A : (46)
RTB In VfD — ACD
Vi B
+ ; =1- T, +€
RTpIN-B A
Va
It is more convenient to present the obtained equation in the form:

Nr=mnjt&, (47)

where
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—AAB + RTB InV—C—AB-C + RTB In\l—ADA- —ACD
Ve Vb

£= v . (48)

RTpIn-B

Va

Analysis of the last formula allows us to state that the value & that distinguishes the

efficiency of the Carnot cycle with a working fluid “real gas” from the efficiency of the Carnot

cycle with a working fluid “ideal gas” is a complex function of temperature of the cycle isotherms

and the thermodynamic properties of the real gas that distinguish it from the ideal gas. In addition,

it can be concluded that the efficiency of a real gas can, depending on the value of the volatility

coefficient of a real gas, exceed or be less than the efficiency of an ideal gas. A more detailed

analysis of the issue can be performed only taking into account the specific properties of the

working fluid, that is, including the analysis of the contribution of various quantities A to the
correction term €.

An indirect confirmation of the validity of the obtained formula is the fact that when the

equality Apg =Ag'c =Apa' =Acp =0 is true, that is, during the transformation of real gas

into ideal gas, the following quantities are simultaneously reduced in the last formula:

RTg In\\//—C and RTg In%. Thus, in this case, the correction term & becomes equal to zero,
' D
and the real gas is transformed into ideal gas.

Consequently, it can be stated that the efficiency of the quasistatic Carnot cycle is
determined, in particular by the properties of a real gas. From the point of view of electrochemistry
[15, p. 18], this result is quite expected, since it is known that with the equilibrium course of
electrochemical reactions, the external work carried out by means of chemical energy can occur
both with absorption and with the release of heat. In other words, a quasistatic system can perform
additional, for example, volumetric-mechanical, work due to a chemical process that takes place
with the absorption of heat from the environment or vice versa, with the release of heat into the
environment. In this article this well-known principle is applied to a new object - the Carnot
thermodynamic cycle.

4. Conclusions

Thus, based on the performed work, the following conclusions can be drawn:

1. The existing formulation of the Carnot — Clausius theorem is valid only for the “ideal
gas” working fluid.

2. In general case, based on the presented calculations, the Carnot — Clausius theorem can
be formulated, for example, as follows: the efficiency of a heat engine m, when it is operated on

a reversible Carnot cycle with a “real gas” working fluid is determined by the following formula:
T
n=1--B+¢ (49)
Ta
where Tp and Tg are the temperatures of the upper and lower isotherms of the Carnot cycle,

respectively; € is the correction term (positive or negative), depending on the thermodynamic
properties of a real gas, which tends to zero as the properties of a real gas approach the properties
of an ideal gas.
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