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Abstract: The purpose of this article is to perform a comparative study of a reversible heat engine 

with an ideal or real gas as a working fluid and to determine the change in its efficiency 

depending on the thermodynamic characteristics of the working fluid. The main research method 

is the method of thermodynamic potentials, based primarily on the analysis of changes in the free 

and internal energy of an ideal and real gas in a cyclic process. The theory of thermodynamic 

potentials is used to consider the Carnot quasistatic heat engine. A comparative analysis of its 

operation is carried out, for a cycle with both an ideal and a real gas as a working fluid. The 

possibility of analyzing cyclic processes occurring in heat engines using the method of 

thermodynamic potentials has been identified and substantiated. The study has shown that the 

existing formulation of the Carnot’s theorem is valid only for ideal gas as a working fluid. Based 

on the work carried out, the Carnot’s theorem in the general case can be formulated, for example, 

as follows: the efficiency of the heat engine ηr, when it operates at the reversible Carnot cycle with 

real gas as a working fluid, is determined by the following expression: 

1    B
r
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where AT  and BT are the temperatures of the upper and lower isotherms of the Carnot cycle, 

respectively;   is the correction term (positive or negative), depending on the thermodynamic 

properties of a real gas, which tends to zero as the properties of a real gas approach the 

properties of an ideal gas. 
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Резюме: Целью написания данной статьи является сравнительное исследование 

обратимого теплового двигателя с идеальным или реальным газом в качестве рабочего 

тела и определение изменения его коэффициента полезного действия в зависимости от 

mailto:kis_vg@mail.ru
mailto:kis_vg@mail.ru


 Проблемы энергетики, 2019, том 21, 

33 

термодинамических характеристик рабочего тела. Основным методом исследования 

является метод термодинамических потенциалов, базирующийся, прежде всего на анализе 

изменения свободной и внутренней энергии идеального и реального газа в циклическом 

процессе. В статье на основе теории термодинамических потенциалов произведено 

рассмотрение квазистатического теплового двигателя Карно, в рамках которого 

осуществлен сравнительный анализ его работы, как для цикла с рабочим телом идеальный 

газ, так и для цикла с рабочим телом реальный газ. В работе выявлена и обоснована 

возможность анализа циклических процессов, протекающих в тепловых двигателях с 

использованием метода термодинамических потенциалов. На основе проведѐнного 

исследования установлено, что существующая формулировка теоремы Карно справедлива 

только для рабочего тела «идеальный газ». В общем случае, на основании проведѐнной 

работы, теорема Карно может быть сформулирована, например, следующим образом: 

коэффициент полезного действия тепловой машины ηr, при еѐ функционировании по 

обратимому циклу Карно с рабочим телом реальный газ, определяется следующей 

формулой: 

1    B
r

A

T

T
       

где AT  и BT  — температура, соответственно, верхней и нижней изотерм цикла Карно;   

– поправка (положительная или отрицательная), зависящая от термодинамических 

свойств реального газа, которая стремится к нулю при приближении свойств реального 

газа к свойствам газа идеального. 
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Introduction 

In a number of previous publications [1, 2, 3], the author used the method of 

thermodynamic potentials [4, 5] to analyze the simplest thermodynamic processes (mixing of ideal 

gases and isothermic equilibrium and non-equilibrium expansion of an ideal gas). This work 

explores the behavior of real gas in thermodynamic cycles and the influence of its properties on 

the efficiency of heat engines basing on the basic principles underlying the earlier publications. It 

should be noted that application of the theory of thermodynamic potentials to the “ideal gas 

mixture” system was a key factor in the appearance of an article entitled “The Gibbs Paradox and 

its Solution” [1]. So, the author poses the second task of the present work: to indirectly confirm the 

basic principles underlying this earlier publication. It should be noted that this problem is very 

actively discussed as a matter of modern thermodynamics, as evidenced, in particular, by the 

following works [6-10]. 

In accordance with I. Prigogin [11, p. 81], “Carnot showed that a reversible cyclic heat 

engine must perform the maximum work (driving force) ...”. Later he [11, p. 81] reports: “If any 

heat engine could perform more work than a reversible cyclic engine, then an infinite amount of 

work could be done. First, using a more efficient engine, it was necessary to transfer heat from the 

hot tank to the cold, then, using a reversible heat engine, return the same amount of heat to the hot 

tank. Since the direct process gives more work than it is required to complete the reverse process, 

the result is a gain in work. ... Carnot argued that this was impossible." Note that in this discussion 

there is a substitution of concepts. In fact, Carnot actually speaks only of volumetric-mechanical 

work (and only about it), into which the heat supplied to the system is converted (or vice versa, the 

work is converted to heat), and this phenomenon is observed only when a heat engine with an ideal 

gas as working fluid is used. At the same time, “Joule and Thomson showed that the vast majority 
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of gases studied by them are cooled during free expansion, since such expansion is associated with 

work against the internal forces of interaction between gas particles” [12, p. 35]. There is the 

possibility of heating real gases during expansion [p
1
 . 249], however, an increase in gas 

temperature is a rather rare phenomenon, therefore, in the framework of this work we mainly 

restrict ourselves to considering the first case. Thus, when using non-ideal gas as a working fluid 

in the upper Carnot isotherm, the heat supplied to the system is spent both on the performance of 

volumetric-mechanical work and on maintaining a constant temperature of the “self-cooling” gas. 

As a result, the isotherm of the real gas will be below the isotherm of the ideal gas [13, p. 22], 

which should be interpreted as the presence of some internal compressive pressure of real gas. 

This thesis is illustrated by Fig. 1 "Isotherms for ideal (1) and real (2) gases." 

Thus, it can be stated that under isothermal expansion of one mole of a real gas at relatively 

low pressures (when its volatility coefficient is less than one), the work performed by it  will be 

less than that performed by one mole of an ideal gas at the same pressure change. This is driven by 

the fact that part of heat received by the non-ideal gas from the hot tank will be spent on 

maintaining its temperature, which is necessary for an isothermal process due to the presence of its 

"self-cooling" effect, that is, it is spent on chemical work against the Van der Waals forces. A 

similar situation, except for the sign, is also observed for the lower isotherm of the Carnot cycle. In 

this case, attraction of real gas molecules to each other takes place, so when it is compressed by 

external forces, in addition to heat generated due to mechanical work (as it is observed, for 

example, for an ideal gas) its self-heating occurs due to strengthening of Van der Waals bonds.  

So, in this case the chemical work will be performed by the substance itself. This leads to 

increased, in comparison with the amount of volumetric-mechanical work performed, heat transfer 

to the refrigerator of the system in question. In addition, we note that it is necessary to take into 

account the internal energy of a real gas, the change of which actually determines the volumetric-

mechanical work of adiabats of the Carnot cycle. It is known that in the general case it depends on 

the volume of real gas [11, p. 163] and, therefore, the volumetric-mechanical work performed in 

adiabats (by the system and being done on the system) in this case is not subject to reduction. So it 

can be argued that when carrying out the Carnot cycle with the participation of real gas, along with 

the use of heat for performing volumetric-mechanical work, it is also used for performing chemical 

work, which has an influence on the system efficiency. This phenomenon will be considered in 

more detail in subsequent sections of this work. In addition, it should be noted that there are no 

doubts that the considered effects and their values depend on the type of reversible heat engine 

(thermodynamic cycle), which requires analysis of this factor, but is clearly beyond the scope of 

this work. 

 
Fig. 1. Isotherms for ideal (1) and real (2) gases 

We now return to the Carnot’s theorem itself. Its traditional formulation, given, for 

example, in the monograph by I. Prigogin [11, p. 83], states that the discovery of Carnot “... comes 

                                                           
1 Yavorsky B.M. Справочник по физике: справочник / B.M. Yavorsky, A.A. Detlaf. Moscow: 

Nauka, 1974. (In Russ). 
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down to the statement that the efficiency of a reversible heat engine is maximum, does not depend 

on the properties of the heat engine and is a function of only the temperatures of the hot and cold 

tanks: 

1
1 2

2

1 1 ( , )   
Q

f t t
Q

                                                       (1) 

where 1 2( , )f t t are the function of only temperatures 1t  and 2t  of hot and cold tanks.” 

Earlier we showed that in the case of real gas this statement is not true. Therefore, the 

aforecited conclusion of the Carnot’s theorem should be attributed exclusively to the working fluid 

“ideal gas”. In case of a real gas, expression (1) becomes simply incorrect, since there appears 

relationship between   and the gas properties. In the following sections of this article, we show 

the validity of the stated thesis using specific examples. 

 

Materials and methods 

Analysis of the work of the Carnot thermodynamic cycle with the “ideal gas” working fluid 

can be found in almost any course of thermodynamics. Therefore, we will use one of the variants 

for studying this issue, basing, for example, on the monograph of I. Prigogin [11, pp. 83–86]. 

Together with it, we will use the method proposed by the author and presented, in particular, in his 

work, “Philips and Carnot Heat Engines from the Point of View of the Theory of Thermodynamic 

Potentials” [3]. 

 

 
Fig. 2. Carnot cycle in P-V coordinates for ideal and real gas 

 

Fig. 2 shows a graph of the cyclic operation of the Carnot machine in pressure-volume 

coordinates for one mole of ideal gas and one mole of real gas. Moreover, without loss of 

generality, it is accepted that the right adiabats and the right parts of isotherms of thermodynamic 

cycles of real and ideal gases coincide. In other words, the real gas in this case becomes ideal. 

Using this technique allows us to consider any Carnot cycle with the participation of the real gas 

P 

V 
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a – ab – dc – d  as the difference of two Carnot cycles ("large" a – b – c –d and "small" ab – b –

 c – dc), in which, in their right part, the expansion of real gas is so significant that it becomes an 

ideal gas. An explanation of this thesis is presented in Fig. 3. In addition, in order to simplify 

further calculations, we assume that the device under consideration, operating with either ideal or 

real gas, is in vacuum, and to analyze its operation we use the theory of thermodynamic potentials, 

assuming that only one mole of gas is always used in the system. 

Stage 1. Isothermal transitions at temperature TA. 

Ideal gas. Transition A - B. 

In this case, in accordance with I. Prigogin [11, p. 84], external work performed by one 

mole of ideal gas AAB is determined by the expression 

ln
B B

AB AA
A

V
A PdV RT

V
  ,                                                 (2) 

where P is the gas pressure; V is the current gas volume; AV  and BV  are the ideal gas volumes 

at the beginning and at the end of the upper isotherm of the Carnot cycle, respectively; AT  is the 

gas temperature of the upper isotherm of the Carnot cycle,  R is the universal gas constant. 

When using pressure as an independent variable, the last expression can be rewritten [14, p. 

22] in the following form: 

ln
B B

AB AA
A

P
A VdP RT

P
   ,                                                (3) 

where AP  and BP  are the ideal gas pressures at the beginning and at the end of the upper isotherm 

of the Carnot cycle, respectively. 

In such an isothermal process involving an ideal gas, heat ABQ  is absorbed from the 

reservoir, and the following equality is fulfilled: 

AB ABA Q .                                                                            (4) 

 

 
Fig. 3. The scheme of transformation of Carnot cycles with real gas as a working fluid 

 

 

Real gas. Transition a - b. 

In this case, external work performed by real gas abA  is determined by the ratio [14, p. 22] 

ln
b b

ab Aa
a

f
A VdP RT

f
                                                  (5) 
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where af  and bf  are the volatilities of real gas at the beginning and end of the upper isotherm of 

the Carnot cycle, respectively.  

Further, the difference between the volumetric-mechanical work of a real gas realA  and 

the volumetric-mechanical work of an ideal gas idealA will be a certain amount AB , which N. 

Izmailov calls the excessive work of expansion and is determined [13, p. 22], with the system of 

signs adopted by us, as follows : 

ideal realln A
AB A

A

P
RT A A

f
    ,                                          (6) 

where idealA  is the isothermal work performed by ideal gas when expanding from pressure AP  to 

pressure BP ; realA  is the isothermal work performed by real gas when expanding from pressure

AP , corresponding to volatility af  to pressure BP , at which the real gas becomes an ideal one.  

In this case, it can be stated (see Fig. 2) that heat received by the system with real gas 

(when volatility coefficient is less than one) is consumed both for performing external work abA  
and for working against internal pressure forces AB , i.e., the mutual attraction of gas particles. It 

should be noted that in the a - b isotherm the amount of heat absorbed by the real gas abQ remains 

unchanged, that is, it is equal to the heat absorbed by the ideal gas ABQ  in the isotherm A - B. 

Thus, for the upper isotherm of the Carnot cycle with alternating participation of the real and ideal 

gas it can be written: 

AB abQ Q ,                                                               (7) 

0AB ab ABA A    .                                                      (8) 

Stage 2. Adiabatic transition. 

Ideal gas. Transition B - C. 

It is known that the only source of energy for performing external work BCA , under 

adiabatic expansion of an ideal gas, is a change in its internal energy U [14, p. 42]. Therefore, in 

this case, we can write 

( )v A B BCU C T T A    ,                                                  (9) 

where vC is the heat capacity of an ideal gas at a constant pressure, and BT  is the gas temperature 

in the lower isotherm of the Carnot cycle.  

Due to the preconditions imposed on the considered Carnot cycles, an analysis of the 

adiabatic transition b - c for a real gas is not required (all its parameters coincide with the 

parameters of an ideal gas), i.e. in particular BC bcA A . 

At the same time, for further research, we need to know the characteristics of an ideal gas at 

the moment of the end of the right adiabat at a temperature BT  (the beginning of the “lower” 

isotherm of ideal and real gas). For this purpose, the transition from point B to point C is carried 

out in two stages. In the first case, we move at a constant volume of ideal gas from point B to point 

B′ located on the lower isotherm of the Carnot cycle, which will lead to a corresponding change in 

its internal energy [3]: 

' ( )BB v A BU C T T   .                                                  (10) 

The heat released as a result of this process we will direct to a battery, which has a 

temperature BT . It should be noted that the volumetric-mechanical work in this case, due to the 

constancy of the volume of gas, is zero. The further transition of one mole of ideal gas is carried 

out along the isotherm from point B′ to point C. In this case, as we found out earlier, the external 

work performed is limited by the amount of heat supplied to the system and going to actually carry 

out this work (in our case, the amount of heat released as a result of a decrease in internal energy). 
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Thus, we can write [13, p. 22], taking into account the isothermal equivalence of the Helmholtz 

and Gibbs energy changes, the following expression: 

' '
' '

ln ln
C C C

BC B C B BB
B B

V P
A A PdV RT RT

V P
     .                           (11) 

In this case, a combination of equations (10) and (11) allows one to determine the values 

CV  and CP  corresponding to the volume and pressure of an ideal gas at point C of the lower 

isotherm. Indeed, from these expressions it follows that 

' '

( ) ln lnC C
v A B B B

B B

V P
C T T RT RT

V P
    .                                    (12) 

In these two equations, only CV  and CP  are unknown. In turn, the external work BCA  or 

bcA  of the considered system during its adiabatic transition from point B to point C will be equal 

to: 

( )BC bc v A BA A C T T   .                                                 (13) 

Stage 3. Isothermal transitions at temperature BT . 

Ideal gas. Transition C - D. 

We will consider this process by analogy with stage 1. 

In this case, in accordance with I. Prigogin [11, p. 85], external work (negative) performed 

on an ideal gas is determined by the expression 

ln
D D

CD BC
C

V
A PdV RT

V
  .                                              (14) 

When using pressure as an independent variable, the last relation can be rewritten [13, p. 

22] in the following form: 

ln
D D

CD BC
C

P
A VdP RT

P
   .                                              (15) 

In such an isothermal process involving an ideal gas, heat CDQ  is transferred to the 

refrigerator, and the following equality is fulfilled: 

CD CDA Q .                                                            (16) 

Real gas. Transition c - d. 

In this case, external work (negative) cdA  performed on real gas is determined by the 

equation 

ln
d d

cd Bc
c

V
A PdV RT

V
  .                                                (17) 

When using pressure as an independent variable and volatility f , the last relation can be 

rewritten [13, p. 22]: 

ln ln
d d d

cd B Bc
c c

f f
A VdP RT RT

f P
     .                                   (18) 

In turn, the difference between the values of the work of the real and ideal gases will be a 

certain amount CD  (negative), which N. Izmailov calls the excess work of expansion and is 

determined in this case [13, p. 22] as follows: 

 

ln D
CD B CD cd

d

P
RT A A

f
     .                                           (19) 

Therefore, the heat CDQ  generated by the system with real gas in the isothermal process c –

 d and transferred to the refrigerator can be decomposed into two components: 
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 Heat received as a result of the actual transformation of mechanical work with the 

participation of external forces acting on the system, and quantitatively equal to this work: 

ln d
B

c

f
RT

P
 ; 

 Heat received as a result of work performed due to the attraction of molecules (Van der 

Waals forces), which is equal to CD . 

Thus, it can be stated that in this case, external work is completely converted into heat; 

moreover, heat is also generated due to the work caused by the forces of Van der Waals. 

Stage 4. Adiabatic transitions. 

Perfect gas. Transition D - A. 

In this subsection, we will use the results obtained by us when analyzing stage 2, which will 

have opposite signs due to the fact that the process under consideration proceeds in the opposite 

direction. All necessary explanations can be obtained from the analysis of Fig. 2: it can be seen 

that the considered transition is divided into two parts: isothermal D - A′ and isochoric A′ - A. It is 

known that under adiabatic compression of an ideal gas, a change in its internal energy is 

numerically equal to the volumetric-mechanical work performed on it [14, p. 42]. Therefore, in 

this case, an increase in internal energy is observed, and the following relation can be written: 

( )DA v A B DAU C T T A     .                                              (20) 

Thus, for transition D - A, given the the Helmholtz and Gibbs energies change equivalence 

in this case, we can write [15, p. 42]: 

' ' '
' ln ln

A A A
DA DA B BD

D D

V P
A A PdV RT RT

V P
     .                            (21) 

The combination of the last two equations allows one to determine DV  and DP , 
corresponding to the volume and pressure of an ideal gas at point D of the lower isotherm. Indeed, 

from these equalities it follows that 

' '( ) ln lnA A
v A B B B

D D

V P
C T T RT RT

V P
     .                                   (22) 

In turn, from the latter expressions one can easily calculate the considered values DV  and 

DP  by means of simple algebraic transformations. 

Real gas. Transition d - a 

We will analyze this process by analogy with the D - A transition, replacing the 

corresponding pressures by volatilities, and the molar volumes of an ideal gas by molar volumes of 

real gas. All necessary explanations can be obtained by analyzing Fig. 2, from which it can be seen 

that the transition under consideration is divided into two parts: the isothermal d - a′ and the 

isochoric a′ - a. 

It is known that during adiabatic compression of gas, a change in its internal energy is 

numerically equal to the volumetric-mechanical work performed on it [14, p. 42]. Therefore, in 

this case, an increase in internal energy is observed, and the following relation can be written: 

( )da r A B daU C T T A                                                  (23) 

where Cr is the heat capacity of real gas at a constant volume aV , which in general case can be a 

function of both temperature and volume. In our discussions, without loss of generality, in order to 

simplify the analysis, we accept it depending only on the real gas volume. As for the previous 

discussions, the volumetric-mechanical work is concentrated in the section d - a′, and accordingly 

it is equal to zero in the section a′ - a. Then, taking into account the comments made, we get: 

' ' '
' ln ln

a a a
da da A Ad

d d

V f
A A PdV RT RT

V f
     .                             (24) 
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The last two equations allow, using simple algebraic transformations, to calculate the 

parameters of the real gas dV  and df  at the point d. 

3. Results and discussion 

3.1 Efficiency of the Carnot cycle with ideal gas 

In accordance with I. Prigogin [11, p. 86], the efficiency of the Carnot cycle with an ideal 

gas i is determined by the formula 

1   i B
i

AB A

A T

Q T
,                                                       (25) 

where iA
 is the total amount of work produced by the considered system. 

We show that the results we obtained in the previous paragraph using the method of 

thermodynamic potentials coincide with the latter formula. To do this, we use fig. 2. The amount 

of heat entering the system in our case, as well as in the usual version of analysis of this process, is 

equal to ABQ  and equals to work performed at this stage ABA . 

To determine the work on the adiabat B - C, one can use the results of the previous 

paragraph (stage 2). In this case, the third-external work performed by the system is 

“concentrated” on the isotherm with temperature BT  and is determined by the following 

expression: 

( )BC v A BA C T T  .                                                        (26) 

A similar situation, except for the sign, is observed when considering the transition along 

the adiabat D - A. External work performed on the system is concentrated on the isotherm with 

temperature BT  and is determined in this case by the formula 

( )DA v A B BCA C T T A     .                                              (27) 

Thus, the total work performed on the upper isotherm and two adiabats, i.e., on the section 

D - A - B - C, will be equal to 

DABC AB BC DAA A A A   .                                              (28) 

However, knowing that 

DA BCA A  ,                                                      (29) 

we obtain 

ln B
DABC AB A

A

V
A A RT

V
  .                                               (30) 

It is known that for negative external work performed on the lower isotherm of the Carnot 

cycle, we can write: 

ln D
CD B

C

V
A RT

V
 .                                                       (31) 

In addition, consideration of the geometry of Fig. 2 allows us to state that the following 

equality is true 

'

'

ln lnB B

A A

V V

V V
 .                                                          (32) 

At the same time, taking into account the fact that on the lower isotherm the same amount 

of work, determined by expression ( )BC DA v A BA A C T T     is added and subtracted to the 

work '
' '

'

ln B
A B B

A

V
A RT

V
 , it becomes possible to assert that its value remains unchanged and, 

therefore, the following relation is true: 

'
ln ln

'

CB
B B

A D

VV
RT RT

V V
 .                                                  (33) 
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And finally, compiling the last equation with the previous one, we get 

ln ln CB

A D

VV

V V
 .                                                           (34) 

Taking into account the last three expressions and substituting the expressions for work 

CDA  and DABCA  into the expression that determines the efficiency of an ideal gas allows us to 

obtain the following formula: 

ln ln

1

ln



   

B D
A B

A C B
i

B A
A

A

V V
RT RT

V V T

V T
RT

V

.                                       (35) 

This expression for the Carnot cycle efficiency completely coincides with a similar relation 

obtained in traditional way [1, p. 86], which confirms the correctness of the method of 

thermodynamic potentials for solving the problems under consideration. In the next subsection of 

this publication, we complicate the task somewhat by applying the method of thermodynamic 

potentials to analyze the efficiency of the Carnot cycle with the “real gas” working fluid. 

3.2. Efficiency of the Carnot cycle with real gas 

In case of Carnot cycle with a “real gas” working fluid, its efficiency r  can be calculated 

using a formula similar to the corresponding formula for an ideal gas: 

  r
r

ab

A

Q
.                                                              (36) 

However, the expression for the work, we denote it here rA , will look somewhat different, 

since we have to use the concept of volatility instead of pressure in these calculation, and instead 

of the ideal gas volume, we use the real gas volume. In this case (see Fig. 2), the determination of 

the cycle efficiency can be carried out using the technique used in the previous paragraph of this 

paper. As before, we assume that the amount of heat abQ  is equal to heat entering the system. 

And, in turn, the work performed by the system in the section a - b will be determined by the 

formula 

ln lnb b
ab A A

a a

V f
A RT RT

V f
   .                                            (37) 

Note that in this case, in accordance with the analysis carried out in Paragraph 4, abA  and 

abQ  and are not equal to each other. To determine the work bcA  in section b - c from point b of 

the upper isotherm along the isochore, we descend to the intersection with the lower isotherm at 

point b′, and then we move along the lower isotherm to point c. Then the total work on the section 

b - b′ - c, due to the constancy of the volume, on the isochore will be concentrated on the segment 

b′ - c and is equal to the following value: 

' '
' ' '

ln ln ln ( )c c c
bb c b c B B B v A B

b b b

V f P
A A RT RT RT C T T

V f P
        .            (38) 

Note that according to the terms of the problem, the properties of ideal and real gases 

coincide in this area, and the corresponding heat capacities are equal to each other. At the same 

time, the solution of the latter relation relative to cf , cP  and cV  allows one to determine the 

properties of the considered gas at point c. 

To determine the point d - the end of the lower isotherm of the Carnot cycle - we use the 

following technique. From point a of the upper isotherm a - b, along the isochor a - a′ we descend 

to the point a′ located on the continuation of the lower isotherm c - d, and then move along the 

isotherm a′ - c to point d. 
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In fact, in the Carnot cycle, the movement along the adiabat under consideration proceeds 

in the opposite direction, which requires appropriate consideration by setting the signs in the 

following formula: 

' '
' ' ' ln ln ( )a a

da a da a d B B r A B
d d

V f
A A A RT RT C T T

V f
         .               (39) 

where rC  is the heat capacity of real gas, at a constant volume aV . 

We note that the solution of the last expression in relation to df  and dV  allows one to 

determine the properties of a real gas at point c. 

Thus, the total work performed on the upper isotherm and two adiabats, i.e., on the section 

d - a - b - c, will be equal to: 

' 'dabc ab b c daA A A A   .                                                (40) 

However, due to the fact that in this case, for the adiabats b - c and d - a, the heat capacities 

are not equal to each other, i.e. r vC C , so 

' 'b c daA A  .                                                           (41) 

Thus, based on the last two formulas, we obtain the expression: 

'

'

'

'

ln ln ln

ln ln ln .

   

   

b c a
dabc A B B

a b d

b c a
A B B

a b d

V V V
A RT RT RT

V V V

f f f
RT RT RT

f f f

.                               (42) 

At the same time, taking into account the data from the previous paragraph, for work 

(negative), which was performed on the system on the isotherm c - d, we obtain the following 

expression: 

ln lnd d
cd B B

c c

V f
A RT RT

V f
   .                                            (43) 

It is more convenient to present the last two ratios in the form 

'
' '

'

ln ln lnCB A
dabc A AB B B C B DA

A B D

VV V
A RT RT RT

V V V
         ,              (44) 

ln D
cd B CD

C

V
A RT

V
   ,                                                  (45) 

where AB , 'B C , 'DA  and CD  is the corresponding redundant expansion work, and 

according to the conditions of the problem ' 0B C  . 

Substitution of expressions for work cdA  and dabcA  in expression that determines the 

efficiency allows us to obtain the formula 

'
' '

'

ln ln ln

ln

ln

1

ln

       

  

 

    

CB A
A AB B B C B DA

A B D
r

B
A

A

D
B CD

C B

B A
A

A

VV V
RT RT RT

V V V

V
RT

V

V
RT

V T

V T
RT

V

.              (46) 

It is more convenient to present the obtained equation in the form: 

    r i ,                                                             (47) 

where 
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'
' '

'

ln ln

ln

        

 

C A
AB B B C B DA CD

B D

B
A

A

V V
RT RT

V V

V
RT

V

.                    (48) 

Analysis of the last formula allows us to state that the value   that distinguishes the 

efficiency of the Carnot cycle with a working fluid “real gas” from the efficiency of the Carnot 

cycle with a working fluid “ideal gas” is a complex function of temperature of the cycle isotherms 

and the thermodynamic properties of the real gas that distinguish it from the ideal gas. In addition, 

it can be concluded that the efficiency of a real gas can, depending on the value of the volatility 

coefficient of a real gas, exceed or be less than the efficiency of an ideal gas. A more detailed 

analysis of the issue can be performed only taking into account the specific properties of the 

working fluid, that is, including the analysis of the contribution of various quantities   to the 

correction term  . 

An indirect confirmation of the validity of the obtained formula is the fact that when the 

equality ' ' 0AB B C DA CD       
 
is true, that is, during the transformation of real gas 

into ideal gas, the following quantities are simultaneously reduced in the last formula: 

'

ln C
B

B

V
RT

V
 and 'ln A

B
D

V
RT

V
. Thus, in this case, the correction term   becomes equal to zero, 

and the real gas is transformed into ideal gas. 

Consequently, it can be stated that the efficiency of the quasistatic Carnot cycle is 

determined, in particular by the properties of a real gas. From the point of view of electrochemistry 

[15, p. 18], this result is quite expected, since it is known that with the equilibrium course of 

electrochemical reactions, the external work carried out by means of chemical energy can occur 

both with absorption and with the release of heat. In other words, a quasistatic system can perform 

additional, for example, volumetric-mechanical, work due to a chemical process that takes place 

with the absorption of heat from the environment or vice versa, with the release of heat into the 

environment. In this article this well-known principle is applied to a new object - the Carnot 

thermodynamic cycle. 

4. Conclusions  

Thus, based on the performed work, the following conclusions can be drawn: 

1. The existing formulation of the Carnot – Clausius theorem is valid only for the “ideal 

gas” working fluid. 

2. In general case, based on the presented calculations, the Carnot – Clausius theorem can 

be formulated, for example, as follows: the efficiency of a heat engine r  when it is operated on 

a reversible Carnot cycle with a “real gas” working fluid is determined by the following formula: 

1    B
r

A

T

T
                                                         (49) 

where AT  and BT are the temperatures of the upper and lower isotherms of the Carnot cycle, 

respectively;   is the correction term (positive or negative), depending on the thermodynamic 

properties of a real gas, which tends to zero as the properties of a real gas approach the properties 

of an ideal gas.  
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