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Abstract.The purpose of this article is to review the existing reliability problems of pipeline
systems of power complexes. The article considers the existing statistical and logistics systems,
which allow to process diagnostic information when assessing the technical condition of pipelines.
Modern diagnostic methods are mainly based on the use of vibration, sound, and ultrasonic
sensors. The presence of a defect in a pipeline is determined by analysis of the amplitude of a
diagnostic signal. Higher efficiency in detecting defects was shown by probability-statistical
methods of signal analysis, which are based on chaos theory. One such method is entropy
analysis. Analysis of modern signal processing methods has shown that methods based on chaos
theory are the most effective. The possibility of using entropy indices as sensitive diagnostic signs
is considered. Comparative analysis of signal processing was carried out using entropy methods
(Shannon entropy, Kolmogorov entropy) and using known statistical and logistic methods (Fourier
Transform, Wavelet Transform, Hilbert-Huang Transform). The analysis results showed that
entropy indicators respond to a change in signal structure caused by the presence of a defect in
the pipeline or Entropy analysis is a promising method of processing diagnostic signals when
assessing the technical condition of pipelines.
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AHAJIN3 IPUMEHEHUS SJHTPOIIMMHBIX METO/IOB OGPABOTKH
BUBPOJUATHOCTHYECKHNX CUTHAJIOB AJ151 ONEHKU TEXHUYECKOT' O
COCTOsAHUA TPYBOIIPOBO10OB

I'anonenko C.O., Konaparbes A.E., Kanununa M.B., /lepOeneBa A.A.
Ka3zanckuii rocy1apcTBeHHbII YHepreTuueckuii yunsepcuret, Kazann, Poccus

Pe3tome: [lenvio Oannoii cmamvu s611emcs 0030p CYyuecmsyrowux npooiem HaoeICHOCmu
MpyOONPOBOOHBIX ~ CUCIEM — IHEP2emu4ecKux Komniekcos. Paccmompenvr  cywecmeyowue
cmamucmuyeckue U 102UCMUuYecKue cucmembl, No36osiouue 0opadbamviéams OUAZHOCMUYECK)IO
uHpopMayuio npu OyeHKe MeXHUUecKo2o COCMOsiHUL mpyoonpogodos. Cospemenivle Memoovl
OUACHOCMUKU 68 OCHOBHOM OCHOBAHbL HA  UCNOAb308AHUU  BUOPAYUOHHBIX, 38VKOBbIX U
YILIMPA38yKo8bix damuuxos. Hanuuue deghexma 8 mpyoonpoeoode onpeodensiemcs nymem aHaiuza
AMRIUMYObl OUACHOCTIUYECK020 cuchand. Bonee 6vicokylo apghexmusnocms npu obHapysicenuu
Oeghexmos nokasanu 8epOSIMHOCIHO-CIMAMUCIMUYECKUe Memoobl AHAIU3A CUSHALO8, OCHOBAHHbIE
Ha meopuu xaoca. OOHUM U3 MAKUX MeMOO08 SGISAeMCs IHMPONULnbLL ananus. Ananus
COBPEMEHHBIX MEMOO08 0OPAbOMKYU CUSHATI08 NOKA3A, YMO Hauboaee P dexmusnvimu A8IAI0MCA
Memoobl, OCHOBAHHble HA meopuu xaoca. Paccmompena 603MONCHOCIb  UCNONb30BAHUSL
OHMPONULIHBIX NOKA3amenell 6 Kawecmee UYyGCMGUMENbHbIX OUAZHOCMUYECKUX NPUSHAKOS.
IIpogeden cpasHumenvHulil AHAIU3 O0OPAOOMKU CUSHANIO8 C UCHOIb30BAHUEM IHMPONUUHBIX
memooos (3umponusi [llennona, sumponus Koimoeoposa) u u36ecmuvblx CMAmMucCmMu4eckux u
Jocucmuyeckux memooos (npeobpaszosanue Dypve, eeusrem-npeobpazosanue, npeoopazosanue
Tunvbepma-Xyanea). Pe3yibmamuvl auaiu3a NOKA3GAU, YMO  OSHMPORULIHbIE NOKA3amenu
peazupyiom Ha U3MeHeHue CIMpPYKmypbl CUCHATA, 8bI36AHHOE Haauduem deghekma 6 mpyoonpogooe
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unu 3Hmp0nu12HbllZ AHAJIU3 A6TIAEmCcia nepCcneKmueHbim Memooom 06pa60m1<u OUACHOCMUYECKUX
CUCHAN06 NpU OYEHKe MEXHUUECKO20 COCMOAHUA mpyéonpoeoc)oe.

Knroueevie  cnoea:  Ananus;,  npumenenue;  dHMpONUliHble — Memoovl,  obpabomka;
BUOPOOUACHOCIIUYECKUE CUSHABI, OYEHKA; MEXHUUeCKoe COCMOosiHUe; mpyOOonpo8oobi.

Jas mutupoBanus: [anonenko C.O., KonnmpateeB A.E., Kanuauna M.B., JlepOeneBa A.A.
AHanu3 NpUMEHEHUS YHTPONMUHBIX METOIOB 00PaOOTKH BUOPOIUATHOCTHUECKHUX CUTHAJIOB IS
OIIEHKH TEXHHUYECKOTO COCTOSIHUS TPpyOOmpoBoaoB // M3BeCTHst BBHICHINX Y4eOHBIX 3aBEICHHIA.
ITPOBJIEMbI DHEPI'ETHUKMU. 2024. T.26. Ne 2. C. 128-137. d0i:10.30724/1998-9903-2024-26-
2-128-137.

Introduction

Pipeline systems of energy complexes are considered critical structures, and high
requirements are imposed on their safe and reliable operation.

Due to high operating parameters, such as operating pressure, flow rate, length, and
increasing age of pipeline systems, there is a complex of problems related to safety, reliability,
resource assessment, and risk [1].

The solution to these problems is ensured by timely diagnostics of pipeline systems.
According to the results of diagnostics, pipelines are either allowed for further operation or
undergo repair or replacement [2].Modern methods of pipeline diagnostics are mainly based on the
use of vibration, sound, and ultrasonic sensors [3]. Vibration diagnostic signals are used as
diagnostic information. In this case, the presence of a defect in the pipeline is determined by
analyzing the amplitude of the diagnostic signal.

To carry out a reliable assessment of the technical condition of the pipeline, it is necessary
to properly extract the diagnostic information from the vibration signal [4,5].The following
methods are traditionally used for signal processing: wavelet transform, Fourier transform, S-
transform, Hilbert-Huang transform. In this article, we will consider the possibility of using
probabilistic-statistical methods of signal analysis, which are based on chaos theory.

Fast Fourier Transform

Fast Fourier transform (FFT) [6] is a kind of discrete Fourier transform (DFT), which is
calculated by the formula:

X)) =YNBdxmWi, 0<k <N-1 (1)
where X (k)—k-scomplex amplitude (component) of the spectrum; x(n)— samples of a discrete
signal (periodic with a period N or finite length N); Wj— turning factor (or transformation
kernel).

Direct calculation of the DFT by formula (1) for large N (when processing audio signals,
the length of the audio signal can reach 2'°= 1024) is ineffective, a large number of operations
does not make it possible to provide real-time. Indeed, to calculate the N-point transformation, it is
required to perform (N-1)’complex multiplications andN(N-1) complex additions, that is, the
amount of computation is of the order of N?operations of addition and multiplication of complex
numbers [7].To reduce computational costs, FFT algorithms have been developed based on the
periodicity of the transformation kernelW;**. The idea of the FFT is to divide the N-point sequence
into two, from the DFT of which you can obtain the DFT of the original sequence, and continue
this division of each new sequence until there are only two sequences left [8].

The main problem when applying the Fourier transform is the requirement to use only
signals whose length must be with a power of two. For example, performing an FFT with an array
of 512 or 1024 points of the signal is acceptable, but not with an array of 500 or 1000 points. As a
result, a signal with a frequency of 1 kHz, taken at a sampling rate of 10 MHz, cannot be subjected
to an FFT at its length of the period, which in these conditions will be 1000 points, then you will
have to use a slightly larger area for analysis - 1.024 signal periods and thus distort the signal
spectrum because the Fourier transform should be carried out exactly on the segment of the signal
period or a multiple of it [9].

Another disadvantage of the FFT is that the Fourier transform does not reveal the
peculiarities of the behavior of the spectral components in time. The signal is measured at certain
points in time, and there is no information about its state in the intervals between these points.

Wavelet transform

The wavelet transform is similar to the windowed Fourier transform but has a completely
different scoring function. The main difference is that the Fourier transform decomposes the signal
into sine and cosine components, i.e. functions localized in Fourier space.
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The wavelet transform, on the other hand, uses functions localized in both real and Fourier

space. The wavelet transform can be expressed by the following equation:
F(a,b) = [ fOP (e () dx(2)

where * - complex conjugacy symbol and functiony - some function. The function can be
chosen arbitrarily, but it must follow certain rules.

The wavelet transform is actually an infinite set of different transformations, depending on
the evaluation function used to calculate it [10].

There are many types of classification of wavelet transform options. Consider a division
based on wavelet orthogonality. In practice, orthogonal wavelets are used for discrete wavelet
transforms and non-orthogonal wavelets for continuous ones.
Thesetwotypesoftransformationshavecertainproperties.

Discrete Wavelet Transform (DWT) is an implementation of a wavelet transform using a
discrete set of wavelet scales and translations that obey certain specific rules [11]. DWT
decomposes the signal into a mutually orthogonal set of wavelets, it is the main difference from
the continuous wavelet transform (CWT).

A wavelet can be constructed from a scale function that describes its scalability properties.
The limitation is that the scale function must be orthogonal to its discrete transformations, which
implies some mathematical constraints on them, namely the homothety equation:

D(x) = Y=o AP (S — k) 3)

where S - the scale factor, is usually selected equal to two. The area under the function

must be normalized, and the scaling function must be orthogonal to its numerical translations:
JZ 0D (x + Ddx = 8, 4

After introducing some additional conditions, we obtain the result of all these equations, i.e.
a finite set of coefficientsa,that determine the scaling function, as well as the wavelet. The wavelet
is obtained from the scaling function as N, where N is an even integer. The set of wavelets then
forms an orthonormal basis that is used to decompose the signal.

Continuous Wavelet Transform (CWT) is an implementation of a wavelet transform using
arbitrary scales and arbitrary wavelets. The wavelets used are not orthogonal, and the data
obtained during this transformation is highly correlated. For discrete-time sequences, you can also
use this transform, with the restriction that the smallest wavelet translations should be equal to the
data sampling. This is sometimes called Discrete-Time Continuous Wavelet Transform (DT-
CWT) and is the most commonly used method for calculating CWT in practice[11].

With CWT, the definition of the wavelet transform is used directly, i.e. calculate the
convolution of the scaled wavelet signal. For each scale, a set of the same length N as the input
signal is obtained. Using M randomly selected scales, an N x M field is obtained that directly
represents the time-frequency plane. The algorithm used for this calculation can be based on
forward convolution or on convolution through multiplication in Fourier space, which is called the
fast wavelet transform.

The choice of the wavelet for use in time-frequency decomposition is the most important
step in determining the time and frequency resolution of the result. You cannot change the basic
characteristics of the wavelet transform in this way, but you can increase the overall frequency or
time resolution. This is directly proportional to the width of the used wavelet in real and Fourier
space. For example, if we use the Morlet wavelet, then one can expect a high-frequency resolution
since such a wavelet is very well localized in frequency. Conversely, using the derivative of
Gaussian (DOG), we get good localization in time, but poor in frequency.

The reliability of the vibration signal analysis using the wavelet transform largely depends
on the choice of the basis function. In this regard, the problem arises of the formation of an
adaptive basis of the frequency-time conversion functionally dependent on the content of the
vibroacoustic signals themselves.

Hilbert-Huang transform

The Hilbert — Huang transform [12] (HHT) is a transformation based on the assumption
that any signal can be represented as a sum of oscillatory processes, each of which satisfies the
symmetry condition and some residual, which is a trend.

The implementation of the Hilbert — Huang transform consists of two stages: empirical
mode decomposition (EMD) and the Hilbert transform. The EMD method is intended for the
analysis of non-stationary and non-linear processes. Unlike Fourier and wavelet analysis, EMD is
straightforward, intuitive, and adaptive.

Empirical mode decomposition is implemented in several stages [13].

1. The position of all local extrema is determined in the signaly(k).
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2. The upper u(k) and lower uy(k) envelopes of the process are calculated using a cubic
spline, respectively.
The function of average values m;(k) between the envelopes is determined:

m, (k) — ut(k)‘;‘ub(b)(S)

The difference between the signal y(k) and the function my(k) gives the first sifting

component - the function hy(k), which is the first approximation of the internal mode function:
h1(k) = y(k) — m1(k) (6)

3. The operations are repeated in stages 1 and 2, in this case, instead of the functiony(k) the
functionhy(k) is taken, and then the second approximation to the first function of the internal mode
is found::

h2(k) = h1(k) — m2(k) @)

The sifting operation can be stopped at a given iteration value or at a given normalized
squared difference between two successive iterations.

4. The last value h;(K) of iterations is taken as the highest-frequency functionc, (k) = h;(k) of
the family of functions of the internal mode, which is directly included in the original signaly(k).
This allows us to subtract c,(k) from the signal and leave the lowest-frequency components in it:

ri(k) = y(k) — c1(k) (8)

The functionr(k) is processed as new data using a similar technique with finding the
second function of the internal mode — c,(k), after which the process continues.

So, the signal decomposition in the n-approximation is achieved:

y(k) = Xizq ci(k) + 1.(k) 9)

Decomposition is based on the assumption that any data consists of various simple internal
mode oscillations. Each internal mode, linear or non-linear, represents a simple wobble containing
the same number of extrema and zero crossovers. Moreover, the fluctuations are symmetrical
about the local mean. At any moment of time, many internal oscillations can coexist,
superimposed on each other [14]. The signal data itself is the sum of all mode waves.

The Hilbert-Huang transform is a time-frequency analysis of data and does not require an a
priori functional transformation basis. Instantaneous frequencies are calculated from the
derivatives of the phase functions by the Hilbert transformation of the basis functions [15].

S-transform

S-transform [16] (on behalf of the researcher Stockwell) is a relatively recently developed
method of time-frequency analysis. The S-transform is a kind of windowed Fourier transform with
a Gaussian windowing function of the form:

f(x) = qe b@x=0? (10)

This operational method is based on the use of polynomial approximation as an operational
calculus.

Mathematically, an S-transform is defined as follows:

Se(t. ) = [ x(@)|fle ™D Femi2fTqr (1)

S-transform combines features of FFT and wavelet transforms. The S-transform provides
frequency-dependent resolution similar to the wavelet transform, while simultaneously providing a
direct link to the linear Fourier spectrum like the short-term Fourier transform. The S-transform
procedure is based on the Fourier transform and the use of a sliding window function, which is
similar to the short-term Fourier transform; however, the width of the window function in the time
domain will be inversely proportional to the frequency of the analysis.So, the window is wider in
the low-frequency regions and narrower in the higher-frequency regions. As a result, the S-
transform (like the wavelet transform) has a "fine™ frequency resolution in the low-frequency
region and a "coarse" resolution for the high-frequency components. S-transform is used to
analyze short-duration transient signals. Examples of the use of S-transform are described in some
engineering and biomedical fields.

Despite its important advantages, the S transform has limitations. First, because the
windowing function narrows in time at higher analysis frequencies, the frequency resolution
inevitably becomes worse. Poor frequency resolution can lead to poor performance or even
erroneous results in practical applications. Secondly, the amplitude of the noise can be increased in
the high-frequency region, which can lead to false conclusions when analyzing noisy signals.

Methods for entropy parameterization of diagnostic signals

The above signal processing methods are based on the registration and analysis of
vibroacoustic signals. However, such signals have different sources, physical nature, and causes of
occurrence.So, the typical methods of processing vibroacoustic signals have significant
differences, which forces the use of several parallel mechanisms in diagnostic systems, which
complicates these systems[17].At the same time, these mathematical mechanisms often do not
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allow detecting deviations in the technical state of objects that go beyond the previously described
ones, especially at an early stage of the occurrence of these deviations. For example, if there is a
vibrodiagnostic signal, the parameters of which do not exceed the set threshold values, but the
signal carries information about the deviation of the state of the diagnosed object, then this signal
can be ignored[18].

Considering the complexity of dynamic interactions in the presence of defects in pipeline
systems, the use of traditional processing methods is insufficient. Equipment and pipelines of
power systems and complexes often exhibit chaotic behavior, which is reflected in the nature of
diagnostic signals.

Such irregular signal components cannot be effectively identified by traditional methods.

Modern methods of processing useful signals are mainly based on the analysis of the
amplitude of the useful signal [19]. However, the amplitude is not a reliable diagnostic sign, since
a large number of different factors can affect the change in amplitude, which is extremely
problematic to take into account.

Methods of entropy parameterization of diagnostic signals (Shannon entropy, Kolmogorov
entropy) can be successfully used to study chaotic oscillations in physical systems. Their use for
the analysis of vibroacoustic signals will improve the reliability of the control of pipeline systems
of power complexes and, as a result, will significantly increase the reliability of the operation of
these facilities[20].

In this case, probabilistic and statistical methods of signal analysis, which are based on
chaos theory, show high efficiency. It should be noted that the entropy indicators respond to
changes in the signal structure caused by the presence of a defect or leak in the pipeline. At the
same time, the entropy indices depend little on the amplitude. Let us consider the possibility of
using entropy indicators as sensitive diagnostic signs[21].

Shannon's entropy

Shannon's entropy characterizes the degree of process variability. By increasing the value
of Shannon's entropy, one can judge the effect of the defect on the signal under study[22]. The
calculation of Shannon's entropy is based on the formula proposed by Claude Shannon to calculate
the informational entropy:

H = - pilogp; (12)

where p; is the probability of the value from the sample falling into the i-level.

Shannon's entropy quantifies the deviation of the distribution of the values of the time
series by levels from the equiprobable one. If one of the levels is filled with values, the Shannon
entropy is Hg, = 0. When the values are evenly distributed over the levels, Shannon's entropy is
maximum and is equal to log n, where n is the number of levels[23, 24].

So, the entropy of event X is the sum with the opposite sign of all the products of the
relative frequencies of occurrence of an event i, multiplied by their own logarithms. This definition
for discrete random events can be extended to the probability distribution function.

Shannon derived this definition of entropy from the following assumptions:

- the measure must be continuous; that is, a small change in the value of the probability
value should cause a small resultant change in entropy;

- in the case when all are equally probable, an increase in the number of options should
always increase the total entropy;

- it should be possible to make a choice in two steps, in which the entropy of the final result
should be the sum of the entropies of the intermediate results[25].

Using Shannon's entropy, it is possible to quantitatively characterize the distribution of time
series values. When the state of the system changes, the distribution of its parameters changes,
which leads to a change in the entropy value. So, Shannon's entropy is a function of the state of the
system, since it quantitatively estimates the measure of uncertainty in the values of the parameters
that characterize the system.

Kolmogorov's entropy

Kolmogorov's entropy or, in other words, approximating entropy (ApEn) is an important
characteristic of deterministic chaos. ApEn is defined as the rate at which information about the
state of a dynamic system is lost over time[26].

When calculating the Kolmogorov entropy, the time series is divided into a sequence of
vectors m, then the distance between two vectors X (i) and X (j) is determined:

d(X(D,X()) = max=y, m(Ix(@ +k—1) —x(G + k-1 (13)
wherei =1,2, .. N-m+1,j=1.2 .., N-m + 1 and N is the number of samples contained in
the time series.

Then, for each vector X(i) wecalculateC™ () — a measure describing the similarity between
the vectors X(i) and all other vectors:
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I = 3o ie1 0 r = dIXD, XD, (19)
where j = 1,2, ..., N - m + 1; r - the value of the tolerance, which is the parameter of the
noise filter.

Next, the average value of the logarithmC/™ (r)is calculated:

P (1) =y L[ ()], (15)

wherei =1,2, ..., N-m + 1.

Then the value of the Kolmogorov entropy:

ApEn(m,r) = limy_,[¢™ (r) — ™" (1)], (16)

In practice, a limited-time series is used, which consists of N reports[27], while the value of
the Kolmogorov entropy of the time series is determined as follows:

ApEn(m,1,N) = o™ (r) —™*'(r)  (17)

Equation (17) shows the similarity between the reconstructed vectors m and m + 1 in the
time series. This similarity indicates the regularity of the analyzed time series and affects the
corresponding value of the Kolmogorov entropy ApEn[28, 29]The more regularity, the lower the
entropy value.

At the same time, the Kolmogorov entropy expresses the regularity of time series in several
dimensions and reflects more time information. This makes this parameter an attractive tool for
monitoring the dynamics of the system, and information on the development of defects is
important not only for diagnosing the current state of the controlled object but also for predicting
its behavior in the future[30].

Conclusion

When assessing the technical condition of the pipeline by a specialist, it is important that
diagnostic information is efficiently extracted from the signals of diagnostic sensors.

The effectiveness of diagnostic signs is determined, first of all, by the methods of
processing the vibrodiagnostic signal. When assessing the technical condition, statistical, spectral
and chaotic characteristics of digitized signals are used as primary features.

The choice of entropy parameters is due to the sensitivity of the Shannon entropy Hsh and
the Kolmogorov entropy to the chaotic components of the vibrodiagnostic signal accompanying
the manifestation of defects.

The results of the analysis showed that the entropy indicators respond to changes in the
signal structure caused by the presence of a defect or leak in the pipeline. In this case, the entropy
indices depend little on the amplitude. Entropy analysis is a promising method for processing
diagnostic signals when assessing the technical condition of pipelines.
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ABTOpBI NyOJIMKALMM:

I'anonenko Cepzeit Onezoguu — KaHJ. TexXH. Hayk, noueHT Kadenpsl «I[IpompinuieHHas
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TEIUIODHEPreTHKa W cucTeMbl TemmocHatxkenus» (I[1TD) Kaszanckoro rocyaapcTBEHHOTO
SHEPTeTHYECKOT0 YHUBEPCUTETA.

Konopamuee Anexcandp Eezenveeuu — xauna. TexH. HayK, HOUEHT Kadeapsl «IIpomMbinuieHHas
TEIUIOOHEepreTnkKa W cucteMbl TeruiocHaOxkenus» (IITD) KazaHckoro rocyaapcTBEeHHOTO
SHEPreTUYEeCKOro yHUBEPCUTETA.

Kanununa Mapuna Bnaoumupoena — accuctent kadenpsl «[IpoMbIeHHas TEIUIO HEPTeTHKA
n cucreMsl TerocHaOxkerns» ([ITD) Kazanckoro rocymapcTBEHHOTO DSHEPTETHYCCKOTO
YHHBEPCHUTETA.

/Jlepoenesa Anna Anexkcanopoena — KaHJA. SKOHOM. HayK, JOLEHT Kadeapsl «DKOHOMHKA H
opranmzanus mnpousBoxactBay (DOII) Kaszanckoro rocyaapcTBEHHOTO —3HEPrEeTHYECKOTO

YHHBEPCHUTETA.
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