

УДК 66.041.45

ОСОБЕННОСТИ СЖИГАНИЯ МЕТАНО-ВОДОРОДНОЙ ФРАКЦИИ В РАДИАНТНЫХ ТОПКАХ

М.А.ТАЙМАРОВ, Н.Е. КУВШИНОВ, Р.В. АХМЕТОВА, Р.Г. СУНГАТУЛЛИН

Казанский государственный энергетический университет

В данной статье исследуются процессы, происходящие при химических реакциях горения и распределения температуры по объемам радиантных топок в печах нагрева сырья и водородсодержащего газа на установках гидроочистки вакуумного газойля при сжигании метано-водородной фракции вместо природного газа.

Ключевые слова: метано-водородная фракция, горение, теплота сгорания, температура, топка, печь, КПД, коэффициент избытка воздуха, вакуумный газойль, гидроочистка.

Актуальность проблемы. В связи с углублением процесса переработки нефти и увеличением выхода конечных светлых продуктов на нефтеперерабатывающих заводах возросло количество метано-водородной фракции (МВФ), которая предложена к использованию в качестве газообразного топлива вместо природного газа [1–2]. Эксплуатируемые печи нагрева сырья и водородсодержащего газа на установках гидроочистки вакуумного газойля спроектированы на сжигание природного газа с теплотой сгорания Qн^р=34,38 МДж/м³ с содержанием метана 95,5%. Метановодородная фракция содержит метана до 30 и водорода 50% (мол.), имеет теплотворную способность около 28,89 МДж/м³ и более широкие пределы воспламенения (взрываемости) от 4,1 до 75% при 20°С в смеси с воздухом по сравнению с природным газом, пределы взрываемости которого от 5,3 до 15% [3,4]. Определение оптимальных режимных параметров сжигания метано-водородной фракции по условиям минимального отрицательного влияния на теплообмен в печах с использованием существующих горелочных устройств является актуальной проблемой и рассматривается в данной статье.

Описание объекта исследования и методики. В данной работе экспериментально исследуются процессы горения метано-водородной фракции в радиантных топках печей ОН-1000/1,2 при нагреве вакуумного газойля на установке гидроочистки АО «Рязанская нефтеперерабатывающая компания». Методика измерения температуры поверхностей нагрева радиантных змеевиков и определения КПД описаны в работах [5–8]. Программа для ЭВМ, по которой производился тепловой расчет печей при сжигании метано-водородной фракции, изложена в работе [9]. Технические характеристики печей ОН-1000/1 и ОН-1000/2 установки гидроочистки вакуумного газойля представлены в табл. 1.

Таблица 1 Характеристики печей ОН-1000/1 и ОН-1000/2 установки гидроочистки вакуумного газойля

	Характеристики печей ОН-1000/1 и ОН-10	•	1
	Наименование параметра	Ед. изм.	Значение параметра
1	Тип печи		Трубчатая, реакторная
2	Материал змеевика радиантной камеры		08Х18Н12Б
3	Материал змеевика пароподогревателя		Ст.20
4	Радиантный змеевик:		
	количество труб	*****	24
	длина труб	ШТ.	7150
	наружный диаметр труб	MM	
	давление расчетное	мм кгс/см ²	168,27
	температура расчетная стенки трубы	°C	115 609
	общая поверхность труб	M ²	96,6
	поглощение тепла		*
		млн. ккал/ч	3,562
5	Конвективный змеевик:		36
	количество труб	ШТ.	
	наружный диаметр труб	MM	114,3 22
	давление расчетное	кгс/см2	
	температура расчетная стенки трубы	°C M²	371
	общая поверхность труб		496,3
	поглощение тепла	млн. ккал/ч	1,54
6	Тепловая нагрузка печи	Гкал/ч	5,4±0,5
7	в т.ч. радиантная часть	Гкал/ч	3,9±0,5
8	Расход сырья через печь	HM^3/H	195±5
9	Расход ВСГ через печь	тыс.нм ³ /ч	120±5
10	Температура ГСС на входе в печь	°C	325±5
11	Температура ГСС на выходе из печи	°C	350-390
12	Теплотворная способность топливного газа	ккал/м³	6000÷13 000
13	Разрежение на перевале печи	Па	20÷30
14	Содержание кислорода в дымовых газах	%	4,0÷5,0
15	Содержание окиси углерода в дымовых газах	ppm	≤100
16	Коэффициент избытка воздуха на выходе печи	-	1,21÷1,28
17	Температура уходящих дымовых газов	°C	≤290
18	Коэффициент полезного действия печи	%	не менее 81,5
	Удельный расход условного топлива	кг.у.т./тс	не менее 2,9
	- Attended Jenestiere Tennibu	101.5.1.1.1.4	

Характеристики радиантной топки:

Разработчик топки и ее марка: *ABBLUMMUSHEATTRANSFER.r*, двухкамерная кабина, двойная горелка с общей верхней конвекцией.

Толщина обмуровки: 120 мм.

Число горелок: 40 основных, 40 пилотных (на одной печи).

Марка горелок: *LE-CFSG-2W*.

Разработчик горелок: CALLIDUSTECHNOLOGIES.

Разработчик печи и ее марка: ABBLUMMUSHEATTRANSFER.

Высота дымовой трубы: 28680 м, число дополнительных печей, подсоединенных к печи – нет.

Тип обмуровки: шамот (кирпич марки ША-5).

Наличие теплоутилизирующих элементов на печи: да (в конвекции расположены змеевики для выработки пара среднего давления).

Схема расположения горелок: подовая (напольная, плоскопламенная, с естественной вентиляцией).

Наличие воздухорегулирующих шиберов на горелках: да (ручная регулировка). Коэффициент избытка воздуха на перевале: 1,15

Результаты исследования и их обсуждение. В настоящей работе произведены тепловые расчеты тепловыделений в топках печей при химических реакциях горения метано-водородной фракции и природного газа при различных избытках воздуха, подаваемого на горение. Результаты расчетов даны в сравнении с экспериментальными данными. Составы метано-водородной фракции и сжигаемого природного газа приведены в табл. 2, 3.

Состав метано-водородной фракции

Таблица 2

Компоненты	Молекулярный вес, кг/кг-моль	Состав, молярная доля, %
H ₂	2,01	50,10
CH ₄	16,04	30,41
C_2H_6	30,07	14.58
C ₃ H ₈	44,09	2,63
nC_4H_{10}	58,12	6,46
Молекулярный вес, кг/кг- моль		12,87
Плотность смеси, кг/м ³		0,5357
Низшая теплота,кДж/кг		53248
Низшая теплота, ккал/м ³		6807,8

Таблица 3

Состав природного газа

Компоненты	Молекулярный вес, кг/кг-моль	Состав, молярная доля, %
CH ₄	16,04	95,48
C_2H_6	30,07	2,38
Плотность газа, кг/м ³		0,7039
Низшая теплота сгорания, $\kappa Дж/м^3$		34380
Низшая теплота сгорания, ккал/ 3		8211

Сжигание метано-водородной фракции с большим содержанием водорода имеет свои особенности. Скорость горения водорода в 2–5 раз выше скорости горения природного газа. Поэтому скорость подачи метано-водородной фракции в топку должна быть минимум в 2 раза большей, чем для природного газа. Горелки, с помощью которых газ смешивается в радиантной топке, создают нестабильное пламя вследствие недостаточной турбулизации потока воздуха и метано-водородной фракции, поскольку количество инжектируемого воздуха недостаточно. Стабильное горение метано-

водородной фракции достигается при интенсивном турбулентном перемешивании его с достаточным количеством воздуха.

Смесь водорода с кислородом воздуха образует гремучую смесь, которая воспламеняется и горит с большой скоростью, что приводит к взрыву. Скорость горения водорода зависит от концентрации кислорода в смеси и колеблется в пределах 120 – 1000 см/сек. При сжигании водорода в смеси с воздухом максимальная скорость горения достигает 260 см/сек [10]. Эксперименты данной работы показали, что в радиантных топках печей ОН-1000/1 и ОН-1000/2 при использовании существующих горелок, рассчитанных на сжигание природного газа, горение водорода происходит в области перевала печей, то есть за пределами непосредственно самой радиантной топки. Это связано с малой скорость подвода воздуха и метано-водородной фракции в зону горения. Поэтому температура на перевале повышается в среднем на 35...40 °С (рис. 1) при повышении массовой доли водорода от 6 до 12%. Сложность эксперимента заключалась в том, что для поддержания необходимой температуры нагрева сырья в печах ОН-1000/1 и ОН-1000/2 при увеличении доли водорода в метано-водородной фракции необходимо увеличивать также расход этой фракции, подаваемой на горение (рис. 2).

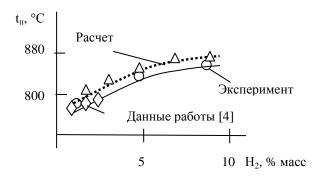


Рис. 1. Температура продуктов сгорания $t_{\rm n}$ на выходе из топки при содержании водорода в сжигаемой метано-водородной фракции

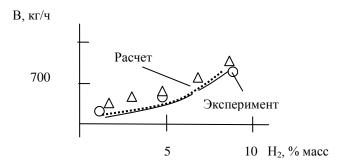


Рис. 2. Расход метано-водородной фракции в зависимости от содержании водорода

Выволы:

1. Для поддержания стабильного горения и предотвращения взрывов в радиантных топках печей OH-1000/1 и OH-1000/2 необходимо процесс горения метановодородной фракции проводить при увеличенных скоростях подачи метано-водродной фракции и воздуха на горение.

2. Снижение температуры продуктов сгорания на перевале печей ОН-1000/1 и ОН-1000/2 после радиантных топок может быть достигнуто путем уменьшения доли водорода в составе метано-водродной фракции.

Summary

This article examines the processes that occur during chemical reactions of combustion, and the distribution in terms of radiant furnace temperature in the heating furnace feedstock and hydrogen-containing gas at facilities hydrotreating vacuum gas oil by burning methane-hydrogen fraction instead of natural gas.

Keywords: methane-hydrogen fraction, burning, heat of combustion, the temperature of the furnace, the furnace, the efficiency, excess air ratio, vacuum gas oil hydrotreating.

Литература

- 1. Таймаров М.А., Додов И.Р., Степанова Т.О. Сжигание сбросных газов для теплофикации в нефтехимии // Вестник Казанского технологического университета. 2015. Т. 18, в.24. С.95–98.
 - 2. Тепловой расчет котлов. Нормативный метод. С.-П: АОО НПО ЦКТИ, 1998. 258 с.
- 3. Танатаров М.А., Ахметшина М.Н., Фасхутдинов Р.А. Технологические расчеты установок переработки нефти. М.: Химия, 1987. 352 с.
- 4. Сарданашвили А.Г., Львова А.И. Примеры и задачи по технологии переработки нефти и газа. М.: Химия, 1980. 256 с.
- 5. Таймаров М.А. Лабораторный практикум по курсу «Котельные установки и парогенераторы». Казань: Казан. гос. энерг. ун-т, 2004. 107 с.
 - 6. Таймаров М.А. Практические занятия на ТЭЦ. Казань: Казан. гос. энерг. ун-т, 2003. 64 с.
- 7. Трембовля В.И. Теплотехнические испытания котельных установок. М.: Энергия, 1977. 297 с.
- 8. Равич М.Б. Упрощенная методика теплотехнических расчетов. М.: изд-во АН СССР, 1966. 407 с.
- 9. Таймаров М.А. Тепловой расчет барабанного котла ТГМ-84. Свидетельство о государственной регистрации программы для ЭВМ № 2012612419 от 6 марта 2012.
- 10. Гельфанд Б.Е., Попов О.Е., Чайванов Б.Б. Водород: параметры горения и взрыва. М.: Физматлит. 2008. 288 с.

Поступила в редакцию

14 декабря 2016 г.

Таймаров Михаил Александрович — д-р техн наук, профессор кафедры «Энергетическое машиностроение» (ЭМ) Казанского государственного энергетического университета (КГЭУ). Тел. 8(843)527-92-20. E-mail: Taimarovma@yandex.ru.

Кувшинов Никита Евгеньевич – магистрант кафедры «Энергетическое машиностроение» (ЭМ) Казанского государственного энергетического университета (КГЭУ). Тел. 8(927)442-83-83. E-mail: kuvshinovnikita@mail.ru.

Ахметова Римма Валентиновна — старший преподаватель кафедры «Электрические станции» (ЭС) Казанского государственного энергетического университета (КГЭУ). E-mail: shila@bk.ru.

Сунгатуллин Раис Газимуллович — старший преподаватель кафедры «Энергообеспечение предприятий и энергоресурсосберегающих технологий» (ЭЭ) Казанского государственного энергетического университета (КГЭУ). E-mail: raesg@mail.ru.