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Резюме: АКТУАЛЬНОСТЬ исследования заключается в необходимости повышения 

точности и надежности информационно-измерительных систем (ИИС) в условиях 

неопределённости и неполноты информации. Современные ИИС повсеместно 

внедряются в критически важные сферы, где эффективность их работы напрямую 

зависит от способности справляться с двумя типами неопределённости: 

стохастической (случайной) и эпистемической (системной). Классические методы 

математической статистики испытывают трудности с формализацией 

эпистемической неопределённости, что делает актуальным поиск новых подходов. 

ЦЕЛЬ работы – обосновать эффективность использования байесовского подхода для 

решения задач повышения точности ИИС в условиях неопределённости. МЕТОДЫ. 

Применяется байесовский подход к теории вероятностей, который трактует 

вероятность как меру уверенности. Ключевым инструментом является теорема Байеса, 

которая объединяет априорные знания о величине с информацией из новых 

экспериментальных данных для получения уточнённой, апостериорной оценки. В статье 

рассматривается применение байесовского подхода к типовой задаче оценки физической 

величины, а также обсуждаются более сложные модели, такие как иерархические 

байесовские модели и байесовские сети. РЕЗУЛЬТАТЫ. Байесовский анализ поможет 

получить не просто точечную оценку, а полное апостериорное распределение 

вероятностей, которое содержит исчерпывающую информацию об измеряемой 

величине, чтобы адекватно оценивать неопределённость и принимать решения с 

минимальным риском. На примере типовой задачи показано, что байесовский синтез 

информации всегда приводит к снижению неопределённости и повышению точности 

оценки. Обсуждается применение байесовского подхода в концепции байесовской 

интеллектуализации измерений, что ведёт к созданию адаптивных ИИС, способных 

непрерывно обновлять свои внутренние модели. ЗАКЛЮЧЕНИЕ. Использование 

байесовского подхода является эффективной и универсальной стратегией для 

повышения точности и надёжности ИИС. Несмотря на вычислительную сложность и 

вызовы, связанные с выбором априорных распределений, данный подход предоставляет 

единый теоретический каркас для решения многих задач. Байесовский подход открывает 

перспективы для создания ИИС нового поколения, способных эффективно работать с 

разнородными данными и обеспечивать требуемое качество измерительной информации 

в сложных условиях. 

 

Ключевые слова: байесовский подход; информационно-измерительная система; 

неопределенность; апостериорная плотность распределения; принятие решений; 

интеллектуализация измерений; байесовская сеть. 

 

Для цитирования: Звягин Л.С. Использование байесовского метода повышения точности 

измерений в условиях неопределенности и недостатка сведений информационно-

измерительных систем // Известия высших учебных заведений. ПРОБЛЕМЫ 

ЭНЕРГЕТИКИ. 2025. Т. 27. № 6. С. 38-48. doi: 10.30724/1998-9903-2025-27-6-38-48. 

ИНФОРМАЦИОННО-

ИЗМЕРИТЕЛЬНЫЕ И 

УПРАВЛЯЮЩИЕ СИСТЕМЫ 



Проблемы энергетики, 2025, том 27, № 6 

39 

USING THE BAYESIAN METHOD TO IMPROVE MEASUREMENT ACCURACY IN 

CONDITIONS OF UNCERTAINTY AND LACK OF INFORMATION FROM 

INFORMATION AND MEASUREMENT SYSTEMS 

 

Zvyagin L.S. 

 

Financial University under the Government of the Russian Federation, Moscow, Russia 

sdimif@yahoo.com 

 

Abstract: RELEVANCE of the research lies in the need to improve the accuracy and reliability 

of information and measurement systems (AIS) in conditions of uncertainty and incompleteness 

of information. Modern AIS are being widely implemented in critical areas, where their 

effectiveness directly depends on their ability to cope with two types of uncertainty: stochastic 

(random) and epistemic (systemic). Classical methods of mathematical statistics have difficulty 

formalizing epistemic uncertainty, which makes it urgent to search for new approaches.  THE 

PURPOSE of the work is to substantiate the effectiveness of using the Bayesian approach to 

solve problems of improving the accuracy of AIS in conditions of uncertainty. METHODS. The 

Bayesian approach to probability theory is applied, which treats probability as a measure of 

confidence. The key tool is Bayes' theorem, which allows combining a priori knowledge of 

magnitude with information from new experimental data to obtain a refined, a posteriori 

estimate. The article examines the application of the Bayesian approach to the typical problem 

of estimating a physical quantity, and discusses more complex models such as hierarchical 

Bayesian models and Bayesian networks. RESULTS. The Bayesian approach to probability 

theory is applied, which treats probability as a measure of confidence. The key tool is Bayes' 

theorem, which allows combining a priori knowledge of magnitude with information from new 

experimental data to obtain a refined, a posteriori estimate. The article examines the 

application of the Bayesian approach to the typical problem of estimating a physical quantity, 

and discusses more complex models such as hierarchical Bayesian models and Bayesian 

networks. results. Bayesian analysis allows us to obtain not just a point estimate, but a complete 

a posteriori probability distribution that contains comprehensive information about the 

measured value. This makes it possible to more adequately assess uncertainty and make 

decisions with minimal risk. Using the example of a typical task, it is shown that Bayesian 

information synthesis always leads to a decrease in uncertainty and an increase in estimation 

accuracy. The application of the Bayesian approach in the concept of Bayesian measurement 

intellectualization is discussed, which leads to the creation of adaptive AIS capable of 

continuously updating their internal models. CONCLUSION. Using the Bayesian approach is 

an effective and versatile strategy to improve the accuracy and reliability of an AIS. Despite the 

computational complexity and challenges associated with the choice of a priori distributions, 

this approach provides a unified theoretical framework for solving a wide range of problems. 

This opens up prospects for creating a new generation of AIS capable of efficiently working with 

heterogeneous data and providing the required quality of measurement information in difficult 

conditions. 
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Введение (Introduction) 

Современный этап развития науки и техники характеризуется повсеместным 

внедрением сложных информационно-измерительных систем (ИИС) в критически важные 

сферы деятельности, промышленную автоматизацию, энергетику, медицину, 

экологический мониторинг и управление киберфизическими системами [1]. Основной 

задачей таких систем является получение достоверной информации об объектах и 

процессах для последующего принятия управленческих решений. Особенно критична 

надежность ИИС в таких областях, как управление автономными транспортными 

средствами, мониторинг состояния умных энергетических сетей (Smart Grids) и 
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прецизионная (точной дозировки) медицина, где эффективность их работы напрямую 

зависит от их способности обеспечивать требуемую точность измерений в реальных 

условиях эксплуатации, которые практически всегда сопровождаются факторами 

неопределенности и неполноты информации [2]. 

Неопределенность в ИИС имеет двойственную природу. С одной стороны, 

стохастическая (случайная) неопределенность, обусловленная флуктуационными 

процессами в объекте и средствах измерений. С другой стороны, эпистемическая 

(системная) неопределенность, связанная с неполнотой наших знаний о модели объекта, 

точности измерительных приборов, влияющих факторах и систематических погрешностях 

[3]. Классические методы обработки данных, базирующиеся на аппарате математической 

статистики частотного толка, эффективно справляются со стохастическими 

компонентами, однако испытывают значительные трудности при формализации и учете 

эпистемической неопределенности [4]. Они, как правило, не предоставляют формального 

механизма для включения в модель априорной информации, полученной из предыдущих 

экспериментов, физических законов или экспертных оценок. 

В этих условиях особую актуальность приобретают методы, основанные на 

байесовском подходе к теории вероятностей. Байесовская методология трактует 

вероятность не как предельную частоту события, а как меру уверенности или степень 

доверия к определенному суждению при наличии имеющейся информации [5]. Такой 

подход помогает органично объединять априорные знания об измеряемой величине с 

информацией, содержащейся в новых экспериментальных данных, для получения 

уточненной, апостериорной оценки. Именно данная особенность делает байесовский 

подход мощным инструментом для повышения точности ИИС в условиях неполноты и 

неопределенности информации. 

Материалы и методы (Materials and methods) 

Методологической базой исследования выступает теория вероятностей и 

математическая статистика, в частности, байесовская теория статистических решений. 

Исследование опирается на фундаментальные принципы байесовской 

интеллектуализации измерительных процессов, предложенные и развитые в работах С. В. 

Прокопчиной [5-7]. В качестве основного математического инструмента используется 

теорема Байеса, которая формализирует процедуру обновления знаний об измеряемой 

величине по мере поступления новых данных. 

В работе применяется системный анализ для декомпозиции общей задачи 

обработки информации в ИИС на три функциональных составляющих, чтобы 

формализовать и интегрировать все источники неопределенности: 

– Модель априорной неопределенности p(θ), отражающая существующие знания 

(или их недостаток) о параметре до проведения текущего измерения (эпистемическая 

неопределенность). 

– Модель процесса измерения (функция правдоподобия) p(D∣θ), описывающая 

стохастические свойства измерительного прибора и случайные погрешности 

(стохастическая неопределенность). 

– Модель синтеза апостериорной информации p(θ∣D), представляющая процедуру 

обновления знаний по теореме Байеса. 

Для описания сложных взаимосвязей между различными источниками 

неопределенности и параметрами системы используются элементы теории иерархических 

байесовских моделей (ИБМ) и байесовских сетей. ИБМ используются для построения 

многоуровневых моделей, учитывающих неопределенность в самой измерительной 

модели (например, калибровочных коэффициентов или параметров погрешностей Θ). 

Байесовские сети применяются для моделирования причинно-следственных связей и 

распространения информации между взаимозависимыми измеряемыми величинами. 

Анализ и обобщение существующих научных результатов в данной области 

проводятся на основе изучения работ отечественных и зарубежных авторов, посвященных 

применению байесовских технологий в измерительной технике, управлении рисками и 

интеллектуализации систем [8-10]. Синтез этих подходов помог сформулировать 

обобщенное уравнение байесовской оценки в ИИС и определить его место в структуре 

современных киберфизических систем и технологий Индустриального Интернета вещей 

(IIoT) [11]. 

Результаты (Results) 

Байесовский подход как парадигма, в рамках которой происходит логический 

вывод в условиях неопределенности. Основой подхода является теорема Байеса, которая 

связывает условные вероятности двух событий [12]. В обработке данных и измерений, 
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теорема дает обновить уверенность в значении некоторого параметра θ после получения 

новых данных D. В математической форме для непрерывных величин, теорема 

записывается как: 

 
   ∣    

   ∣        

    
 (1) 

где p(θ) – априорная плотность распределения вероятностей (prior probability density). Она 

описывает наши знания или представления о параметре θ до получения данных D. 

Формализованное выражение эпистемической неопределенности, основанное на 

предыдущих измерениях, теоретических моделях, паспортных данных приборов или 

экспертных оценках [13]; 

p(D∣θ) – функция правдоподобия (likelihood function) описывает вероятность 

получения данных D при заданном значении параметра θ. Функция фактически является 

стохастической моделью самого процесса измерения, связывающей истинное значение 

величины с наблюдаемыми данными и учитывающей случайные погрешности [14]; 

p(θ∣D) – апостериорная плотность распределения вероятностей (posterior probability 

density). Результат байесовского вывода, представляющий обновленные знания о 

параметре θ после учета данных D. Апостериорное распределение является синтезом 

априорных знаний и информации, извлеченной из эксперимента; 

p(D) – свидетельство или маргинальное правдоподобие (evidence), полная 

вероятность наблюдения данных D, вычисляемая как интеграл по всему пространству 

возможных значений θ: p(D)=∫p(D∣θ)p(θ)dθ. В задачах оценки параметров p(D) выступает 

в роли нормировочного множителя, который обеспечивает выполнение условия 

∫p(θ∣D)dθ=1. 

Отличие байесовского подхода от классического заключается в том, что его 

результатом является не точечная оценка параметра и ее дисперсия, а полное 

апостериорное распределение p(θ∣D). Распределение содержит всю имеющуюся 

информацию об измеряемой величине θ и дает не только найти наиболее вероятное 

значение (например, математическое ожидание или моду распределения), но и оценить 

неопределенность значения через вычисление дисперсии, стандартного отклонения или 

построение доверительных (в байесовской терминологии – правдоподобных) интервалов 

[15]. Такой подход обеспечивает полное и адекватное описание результата измерения в 

условиях неопределенности, а также является основой повышения надежности ИИС. 

Рассмотрим применение данного подхода к типовой задаче ИИС – оценке 

некоторой физической величины x по результатам прямых измерений y. Пусть модель 

измерений имеет вид: 

       (2) 

где x – истинное, но неизвестное значение измеряемой величины, а ϵ – случайная 

погрешность измерения. 

Для применения байесовского подхода необходимо определить два ключевых 

компонента: априорное распределение p(x) и функцию правдоподобия p(y∣x). 

Формализация априорной информации p(x). В условиях реальной ИИС информация 

о величине x практически всегда существует. Например, диапазон допустимых значений, 

заданный технологическим регламентом, или результаты предыдущих измерений. 

Предположим, на основе априорных данных мы можем утверждать, что значение x 

распределено по нормальному закону со средним x0 и дисперсией   
 : 

             
   (3) 

Здесь x0 – наше лучшее предположение до измерения, а   
  – мера нашей 

неуверенности измерения. 

Формализация функции правдоподобия p(y∣x). Функция правдоподобия 

определяется характеристиками измерительного прибора. Если предположить, что 

погрешность измерения ϵ имеет нормальное распределение с нулевым средним и 

известной дисперсией   
  (которая характеризует точность прибора), то правдоподобие 

получения измерения y при истинном значении x также будет нормальным 

распределением: 

    ∣          
   (4) 

Применив теорему Байеса, можно показать, что при нормальных априорном 

распределении и функции правдоподобия апостериорное распределение p(x∣y) также 

будет нормальным с параметрами: 

– Апостериорное среднее (обновленная оценка x): 
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  (5) 

– Апостериорная дисперсия (обновленная неопределенность): 

 
     

  
  

   
 

  
    

 
 (6) 

Анализ формул показывает, что апостериорная оценка         является взвешенным 

средним априорной оценки    и нового измерения y. Веса определяются соотношением 

неопределенностей, если априорные знания точны (  
  мало), больший вес придается   . 

Если же измерение очень точное (  
  мало), больший вес получает y. Важно отметить, что 

апостериорная дисперсия      
  всегда меньше как априорной   

 , так и измерительной   
 . 

Математически доказывает, что байесовский синтез информации, всегда формально 

объединяющий априорные знания и данные измерения, всегда приводит к снижению 

неопределенности и, следовательно, к повышению точности оценки измеряемой 

величины. Надежность ИИС определяется не только точностью, но и адекватностью 

оценки неопределенности и способностью системы к принятию статистически 

обоснованных решений. Байесовский подход обеспечивает это благодаря полному 

вероятностному описанию. На выходе мы получаем не точечную оценку, а полное 

апостериорное распределение, чтобы количественно оценить вероятность нахождения 

истинного значения в любом заданном диапазоне (правдоподобный интервал). 

Интеграция эпистемической неопределенности происходит за счет включения в модель 

гиперпараметров (Θ) в обобщенном уравнении байесовской оценки система учитывает и 

обновляет неопределенность в самой математической модели (например, дрейф 

калибровочных коэффициентов), которая критически важна для надежности в 

долгосрочной эксплуатации. 

Обобщенное уравнение байесовской оценки в ИИС представим в концептуальной 

форме, отражающей процесс «интеллектуализации» измерений: 

        ∣                     ∣         (7) 

где       (X∣Y) – совместное апостериорное распределение вектора интересующих 

величин X, B – обобщенный байесовский оператор, реализующий вычисление по формуле 

Байеса,        (X,Θ) – совместное априорное распределение, описывающее наши знания о 

векторе величин X и векторе гиперпараметров Θ (например, параметры погрешностей, 

калибровочные коэффициенты), чтобы учитывать неопределенность в самой модели, 

L(Y∣X,Θ) – модель правдоподобия, являющаяся математической моделью ИИС, которая 

связывает вектор измерений Y с оцениваемыми величинами X и параметрами системы Θ, 

Y – вектор поступивших данных. На практике, для многомерного случая, оператор   

редко имеет аналитическое решение и реализуется через сложные численные алгоритмы, 

в частности, методы Монте-Карло по схемам цепей Маркова (MCMC) или методы 

вариационного вывода. Данные методы помогают аппроксимировать многомерные 

интегралы, необходимые для вычисления апостериорного распределения       , и 

получить набор случайных выборок, характеризующих такое распределение. 

Обобщенное уравнение подчеркивает, что байесовский подход не просто 

обрабатывает данные, а строит полную вероятностную модель системы, интегрируя все 

доступные источники информации для получения наиболее полного и точного знания об 

объекте измерения. Реальные ИИС часто имеют сложные, многокомпонентные 

структуры. Например, оценка состояния технологического объекта требует 

одновременного измерения температуры, давления и расхода, причем величины могут 

быть взаимосвязаны, а точность каждого измерительного канала зависит от внешних 

условий. Для моделирования таких систем используются иерархические байесовские 

модели (ИБМ) и байесовские сети. В таблице 1 описаны узлы (переменные) и их 

вероятностные зависимости в упрощенной байесовской сети, предназначенной для 

повышения точности измерений и диагностики системных ошибок (например, дрейфа 

калибровки) в ИИИС. 

Таблица 1 

Table 1 

Иерархическая Байесовская модель для ИИИС 

Hierarchical Bayesian model for AIIS 

№ 
Название узла 

(Переменной) 

Уровень 

иерархии 
Роль 

Влияющие 

узлы  

Узлы, на 

которые влияет  

1 Гиперпараметр 

(надежность 

датчиков) 

Верхний 

(Априорный) 

Задает априорное 

распределение для 

параметров низкого 

Нет Параметр 

(дрейф 

калибровки) 
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уровня. Отражает 

долгосрочную, 

общую 

неопределенность в 

качестве и 

стабильности всей 

группы датчиков. 

2 Априорные 

знания  

      

Верхний 

(Априорный) 

Предварительное 

распределение 

вероятности 

измеряемой 

величины, 

основанное на 

прошлых данных или 

экспертной оценке 

(например, 

ожидаемый диапазон 

температуры). 

Нет Параметр 

(дрейф 

калибровки) 

3 Параметр 

(дрейф 

калибровки) 

Средний 

(параметры 

модели) 

Скрытая переменная, 

которая моделирует 

систематическую 

ошибку или 

смещение в 

измерении. 

Оценивается на 

основе 

Гиперпараметров и 

Априорных знаний. 

Гиперпараметр 

(надежность), 

Априорные 

знания 

Наблюдение 

данных 

(правдоподоби

е) 

4 Правдоподоби

е 

(измерительны

й шум) 

Средний 

(параметры 

модели) 

Модель 

стохастической 

неопределенности 

(случайного шума), 

описывающая, 

насколько сильно 

истинное значение 

искажается. На него 

влияет 

систематический 

дрейф. 

Параметр 

(дрейф 

калибровки), 

Истина 

температура 

объекта 

Наблюдаемые 

данные 

(температура) 

5 Истинная 

температура 

объекта 

Нижний 

(скрытое 

состояние) 

Фактическое, но 

неизвестное 

состояние 

измеряемой 

физической 

величины. Это 

ключевая 

переменная, которую 

мы стремимся 

оценить. 

Наблюдаемые 

данные 

Наблюдаемые 

данные 

(температура), 

Истинное 

состояние 

объекта 

6 Наблюдаемые 

данные 

(температура) 

Нижний 

(наблюдаемы

е данные) 

Единственный 

наблюдаемый узел. 

Фактический 

результат, 

полученный от 

датчика. Вся 

информация для 

обучения сети 

поступает через этот 

узел. 

Истина 

температура 

объекта, 

Наблюдаемые 

данные 

Принятие 

решений, 

Интеллектуаль

ная 

диагностика 

7 Принятие 

решений 

Нижний 

(Выход) 

Вывод о состоянии 

объекта или сигнал к 

действию, 

основанный на 

оценке Истинной 

Температуры через 

Наблюдаемые 

Данные. 

Наблюдаемые 

данные 

(температура) 

Нет 

8 Управляющее 

воздействие 

Нижний 

(Вход) 

Внешний сигнал, 

применяемый к 

объекту (например, 

Нет Интеллектуаль

ная 

диагностика 
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включение 

нагревателя/охладите

ля). 

9 Интеллектуаль

ная 

диагностика 

Нижний 

(промежуточн

ое состояние) 

Скрытая переменная, 

оценивающая общее 

состояние системы 

(например, "норма", 

"перегрев", "сбой"). 

Наблюдаемые 

данные 

Управляющее 

воздействие 

Параметр 

воздействия 

Истинное 

состояние 

объекта 

10 Параметр 

воздействия 

Средний 

(параметры 

модели) 

Описывает, 

насколько 

эффективно 

управляющее 

воздействие 

повлияло на объект. 

Интеллектуаль

ная 

диагностика 

Истинное 

состояние 

объекта 

11 Истинное 

состояние 

объекта 

Нижний 

(скрытое 

состояние) 

Обобщенное, 

истинное состояние 

всей системы 

(например, "система 

стабилизируется"). 

Истина 

Температура 

объекта 

Параметр 

воздействия, 

Интеллектуаль

ная 

диагностика 

Нет 

*Источник: Составлено авторами  Source: compiled by the author. 

 

ИБМ помогают строить многоуровневые модели неопределенности. На нижнем 

уровне находятся данные измерений. На среднем – параметры моделей отдельных 

процессов (например, измеряемые величины x(1,), x(2,)...) На верхнем уровне находятся 

гиперпараметры, которые описывают общие свойства для группы параметров (например, 

средняя погрешность для определенного типа датчиков). Такой подход дает системе 

«заимствовать силу» из совокупности данных, уточняя оценки даже для тех каналов, по 

которым имеется мало информации. 

Байесовские сети содержат ориентированные ациклические графы, где узлы – 

переменные (измеряемые величины, параметры, гипотезы), а ребра – вероятностные 

зависимости между ними. Они являются идеальным инструментом для моделирования 

причинно-следственных связей и распространения информации в сложных ИИС. 

Например, аномальное показание одного датчика (следствие) проанализировано с точки 

зрения вероятности различных причин (неисправность датчика, реальное изменение в 

объекте), что является основой для интеллектуальной диагностики и принятия решений 

[3]. 

Применение байесовского подхода лежит в основе концепции байесовской 

интеллектуализации измерений, так как предполагает создание адаптивных ИИС, которые 

[6, 9]: 

– Формализуют и используют всю доступную априорную информацию. 

– Непрерывно обновляют свои внутренние вероятностные модели по мере 

поступления новых данных. 

– Оценивают не только значения величин, но и неопределенность этих оценок.  

– Используют апостериорные распределения для принятия решений с 

минимальным риском, например, в системах управления или предиктивной аналитики 

[10]. 

Более того, байесовские методы находят применение в обучении современных 

моделей машинного обучения, таких как нейронные сети. Использование 

регуляризирующего байесовского подхода помогает бороться с переобучением и 

получать не только точечный прогноз, но и оценку его неопределенности, что критически 

важно для надежности интеллектуальных систем [8]. Также открывает путь к созданию 

гибридных ИИС, где физические модели объекта интегрируются с моделями на основе 

данных в единой байесовской структуре. 

Обсуждение (Discussions) 

Внедрение байесовского подхода в практику проектирования и эксплуатации ИИС 

сопровождается как существенными методологическими преимуществами, так и 

технологическими вызовами. Ключевое достоинство данного подхода заключается в его 

строгой универсальности, предоставляющей единый теоретико-вероятностный каркас для 

решения широкого спектра задач: от прецизионной калибровки первичных 

преобразователей и стохастической фильтрации сигналов до комплексной вероятностной 

оценки состояния объекта и риск-ориентированного анализа в системах управления [1, 10, 
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11]. Способность к формализованной инкорпорации априорной информации и получению 

на выходе полного апостериорного распределения является фундаментальным 

требованием для повышения достоверности измерений, особенно в условиях дефицита 

экспериментальных данных или при доминировании эпистемической неопределенности.  

В интеллектуализации измерительных процессов целесообразно провести 

компаративный анализ байесовского подхода с конкурирующими методологиями, 

направленными на квантификацию неопределенности. По сравнению с классической 

(фреквентистской) статистикой, байесовский метод имеет высокую эвристическую 

гибкость. Фреквентистские методы, такие как метод наименьших квадратов или проверка 

статистических гипотез на основе $p$-значений, преимущественно сосредоточены на 

стохастической неопределенности, трактуя измеряемую величину как фиксированный, но 

непознанный параметр. Их преимуществами являются вычислительная простота и 

широкая стандартизация. Однако, существенным ограничением фреквентистского 

подхода является принципиальная невозможность формального включения априорных 

знаний в математическую модель. Получаемые при этом доверительные интервалы 

характеризуют свойства самой процедуры оценивания, а не меру уверенности в 

конкретной оценке параметра. Таким образом, фреквентистский аппарат неэффективен 

при необходимости формализации эпистемической неопределенности, обусловленной 

неполнотой сведений о систематических погрешностях или неадекватностью модели. 

Байесовский подход нивелирует указанные недостатки, предоставляя правдоподобные 

интервалы, которые непосредственно отражают степень субъективной уверенности 

исследователя или системы, и обеспечивает итеративный синтез априорных данных с 

новой измерительной информацией, что критически важно в условиях холостого старта 

ИИС или при работе с редко возникающими событиями. В отношении невероятностных 

методов, таких как теория нечетких множеств и интервальный анализ, байесовская 

модель также имеет фундаментальные различия. Нечеткая логика оперирует концепцией 

степени принадлежности, что находит применение в моделировании качественных, 

лингвистических оценок (например, «температура высокая») и эффективно для 

реализации эвристических алгоритмов управления. Однако, в нечеткой логике 

отсутствует строгий математический механизм обновления знаний при поступлении 

новых данных, а определение функций принадлежности носит субъективный характер, 

что затрудняет вероятностное сравнение неопределенностей и минимизацию рисков. 

Интервальный анализ использует детерминированные границы для гарантированного 

включения истинного значения, обеспечивая абсолютную робастность оценок. При этом 

его основным недостатком является феномен взрывного роста интервалов при 

последовательной обработке, который быстро приводит к потере информативности 

границ неопределенности и не дает определить плотность вероятности внутри интервала. 

Напротив, байесовский синтез обеспечивает динамическое апостериорное сужение 

распределения, которое прямо пропорционально информативности поступающих данных, 

и является основой для статистически обоснованного принятия решений, базирующегося 

на ожидаемой функции полезности или минимизации потерь. 

Несмотря на методологическое превосходство, практическая реализация 

байесовских методов сопряжена с вычислительной трудоемкостью, требующей 

применения сложных численных алгоритмов, таких как методы Монте-Карло по схемам 

цепей Маркова (MCMC) или вариационный вывод, для аппроксимации многомерных 

интегралов апостериорного распределения [5]. К ограничениям относится критическая 

чувствительность к спецификации вероятностной модели:  

1. Чувствительность к выбору априорных распределений. В условиях высокой 

априорной эпистемической неопределенности (например, для новых технологических 

процессов) выбор неинформативного априора представляет нетривиальную 

методологическую задачу. При отсутствии объективных информативных априоров 

исследователю приходится использовать слабоинформативные распределения, что может 

быть расценено как привнесение субъективного элемента в процедуру оценивания. На 

начальных этапах функционирования ИИС, когда объем накопленных данных   

минимален, апостериорное распределение        может быть неадекватно смещено в 

сторону некорректно выбранного априорного распределения   , который потенциально 

влечет ошибочные управляющие воздействия в критических системах. 

2. Чувствительность к некорректно заданной модели правдоподобия       . 

Достоверность байесовского вывода напрямую зависит от адекватности функции 

правдоподобия       , которая имеет стохастическую модель процесса измерения. Если 

математическое описание случайной погрешности (например, использование 
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нормального распределения вместо более адекватного тяжелохвостого распределения для 

описания реального шума), задано неточно, но неизбежно приведет к искажению 

апостериорного распределения. В таком случае система может переоценивать свою 

уверенность в получаемой оценке, формируя чрезмерно узкие правдоподобные 

интервалы. В иерархических байесовских моделях (ИБМ), где взаимозависимость между 

параметрами высока, ошибка в спецификации условных вероятностей для одной скрытой 

переменной может каскадно деформировать вывод по всей структуре, требуя тщательной 

верификации на основе экспертных знаний об измерительном процессе. 

Несмотря на указанные ограничения, потенциал байесовского подхода в 

интеллектуализации ИИС является наиболее перспективным. Он обеспечивает переход от 

пассивного статистического анализа к активному вероятностному обучению системы. 

Иерархические структуры помогают реализовать механизм «заимствования силы» между 

однотипными измерительными каналами, повышая точность оценки даже в тех 

сегментах, где объем локальных данных недостаточен.  

Таким образом, байесовская методология имеет наиболее полный и математически 

последовательный аппарат для интеграции разнородных знаний и эмпирических данных с 

конечной целью минимизации операционных рисков в критически важных 

информационно-измерительных комплексах.  

Дальнейшие научные исследования целесообразно сосредоточить на разработке 

адаптивных априорных и правдоподобных моделей, способных к автоматической 

самопроверке адекватности в процессе эксплуатации, чтобы существенно снизить 

зависимость итогового результата от ошибок начальной модельной спецификации. 

Заключение или Выводы (Conclusions) 

Проведенное исследование подтверждает, что использование байесовского подхода 

является эффективной стратегией для повышения точности и надежности 

информационно-измерительных систем, работающих в условиях неопределенности и 

неполноты информации. Данный подход предоставляет последовательную и 

математически обоснованную методологию для синтеза априорных знаний об 

измеряемом объекте и информации, содержащейся в экспериментальных данных. 

Результатом байесовского анализа является апостериорное распределение 

вероятностей, которое служит исчерпывающей характеристикой измеряемой величины 

после проведения эксперимента. Оно не только помогает получить точечную оценку и 

количественную меру ее неопределенности, но и является основой для принятия 

статистически обоснованных решений в задачах управления, диагностики и 

прогнозирования. 

Разработанные в рамках концепции байесовской интеллектуализации обобщенные 

модели, иерархические структуры и интеграция с методами машинного обучения 

открывают перспективы для создания ИИС нового поколения. Такие системы способны 

адаптивно корректировать свои внутренние модели, эффективно работать с 

разнородными источниками данных и обеспечивать требуемое качество измерительной 

информации в самых сложных и нестационарных условиях, что является необходимым 

условием для дальнейшего прогресса в области автоматизации, управления и создания 

киберфизических систем. 
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