УДК 621.643: 536.2

ЧИСЛЕННЫЙ АНАЛИЗ ВЛИЯНИЯ ВИДА КОНСТРУКЦИИ КАНАЛЬНОЙ ТЕПЛОВОЙ СЕТИ НА ЕЕ ТЕПЛОВЫЕ РЕЖИМЫ И ТЕПЛОВЫЕ ПОТЕРИ

В.Ю. Половников

Национальный исследовательский Томский политехнический университет, г.Томск, Россия

ORCID: http://orcid.org/0000-0001-5504-0411, heatloss@mail.ru

Резюме: Приведены результаты численного анализа тепловых режимов и тепловых потерь двухячейковых канальных подземных тепловых сетей с использованием конвективно-кондуктивной модели теплопереноса. Для рассматриваемого случая решена двумерная сопряженная стационарная задача конвективно-кондуктивного теплопереноса в системе «подземный канальный двухячейковый теплопровод – окружающая среда». Решение задачи получено методом конечных элементов с использованием неравномерной конечно-элементной сетки. Установлены масштабы тепловых потерь и закономерности теплопереноса в зонах размещения подземных тепловых сетей при прокладке трубопроводов в двухячейковых каналах. Показана возможность проведения анализа тепловых потерь двухячейковых канальных тепловых сетей с использованием модели и методики, предназначенных для расчета теплопотерь одноячейковых теплопроводов.

Ключевые слова: тепловые сети, тепловые потери, теплопровод, канал, математическое моделирование.

Благодарности: Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 16-08-00229-а.

NUMERICAL ANALYSIS OF THE INFLUENCE OF THE DESIGN TYPE OF THE CHANNEL OF HEAT NETWORK ON ITS THERMAL CONDITIONS AND HEAT LOSS

V.Yu. Polovnikov

National Research Tomsk Polytechnic University, Tomsk, Russia ORCID: http://orcid.org/0000-0001-5504-0411, heatloss@mail.ru

Abstract: The results of the numerical analysis of thermal regimes and heat loss of the twochannel underground heating networks with using the convective-conductive model of heat transfer are presented. The two-dimensional coupled stationary problem of convectiveconductive heat transfer in the system «underground two-channel heat pipeline – environment» is solved. The solution of the problem was obtained by the finite element method with using an uneven finite-element grid. The scales of heat loss and the patterns of heat transfer in the zones of underground two-channel heating networks are established. The possibility of analyzing the heat loss of two-channel heating networks with using of the model and the methodology for calculating the heat loss for single-channel heating networks is shown.

Keywords: heat networks, heat loss, heat pipeline, channel, mathematical modeling

Acknowledgments: The reported study was supported by RFBR, research project No. 16-08-00229-a.

Введение

Одним из основных типов прокладки тепловых сетей в РФ является двухтрубная подземная прокладка трубопроводов в железобетонных каналах. При этом можно выделить два наиболее типичных вида конструкции канальной тепловой сети – это прокладка труб в одноячейковых (рис, 16) и двухячейковых (рис, 1a) каналах.

Рис. 1. – Типичные конструкции тепловых сетеи:

а – двухячейковый канал; б – одноячейковый канал; I – металлическая стенка трубы; 2 – слой тепловой изоляции; З – покровный слой; 4 – полость канала; 5 – железобетонная стенка канала; 6 – грунт, п – подающий трубопровод; о – обратный трубопровод

В строительных правилах [1] приведено описание нормативной методики теплового расчета тепловых сетей при подземной прокладке в непроходных (одноячейковых) каналах. Методика [1] базируется на балансовых соотношениях стационарной теплопроводности, детализированно описана в литературе [2], и позволяет вычислять тепловые потери одно- и многотрубных теплопроводов. Однако подход к оценке тепловых потерь [1] не отвечает на вопрос о влиянии вида конструкции канальной тепловой сети на ее тепловые режимы и тепловые потери (не учитывается наличие перегородки между трубами (рис.1,*a*)). Объясняется это обстоятельство тем, что незначительное изменение геометрических характеристик подземных каналов тепловых сетей (наличие перегородки между трубопроводами) приводит к существенному усложнению алгоритма и метода решения задачи теплопереноса [2] для рассматриваемой системы (рис. 1,*a*).

Решить эту проблему можно с использованием широко распространенных современных подходов к моделированию тепловых режимов и тепловых потерь систем транспортировки тепла [3–8], основанных на численном моделировании физических процессов.

Целью данной работы является анализ тепловых режимов и тепловых потерь подземных тепловых сетей при прокладке трубопроводов в двухячейковых каналах.

Постановка задачи

Рассматривается одна из наиболее типичных в РФ конфигурация теплопроводов подземной прокладки [9] – непроходной невентилируемый двухячейковый железобетонный канал и трубопроводы (подающий и обратный), изолированные минеральной ватой и защитным покровным слоем (рис. 1,*a*).

© В.Ю. Половников

Для рассматриваемой области (рис. 1,*a*) решается двумерная сопряженная стационарная задача конвективно-кондуктивного теплопереноса в системе «подземный канальный двухячейковый теплопровод – окружающая среда».

При постановке задачи приняты следующие основные допущения:

- Не рассматриваются процессы переноса тепла в теплоносителях и металлических стенках труб.
- 2. В местах соприкосновения слоев (рис. 1,*a*) выполняются условия идеального теплового контакта.
- 3. Теплофизические характеристики материалов являются постоянными и известными величинами.
- 4. Не учитывается наличие фазовых переходов.
- 5. Воздух, заполняющий полости двухячейкового канала (рис. 1,*a*), считается несжимаемым и удовлетворяющим приближению Буссинеска [3].
- 6. На внутренних поверхностях тепловой изоляции подающего и обратного трубопроводов поддерживается постоянная температура, равная температуре теплоносителя в трубе.
- 7. На достаточно большом расстоянии от теплопровода (рис. 1,*a*) градиенты температур в грунте равны нулю.
- 8. На границе раздела «грунт окружающая среда» осуществляются условия конвективного теплообмена и не учитывается теплообмен излучением.

Принятые допущения, с одной стороны, не накладывают принципиальных ограничений на физическую модель рассматриваемой системы (рис. 1,*a*), а с другой – позволяют существенно упростить алгоритм и метод решения поставленной задачи.

Математическая модель

Математические описание поставленной задачи базируется на методике анализа тепловых режимов систем транспортировки тепла, приведенной в работе [3], и для рассматриваемого случая процесс переноса тепла в двумерной постановке будет описываться:

 – для воздуха в полостях каналов подающего и обратного трубопроводов уравнениями энергии, движения и неразрывности:

$$c_4 \rho_4 \left(w_{x,\pi} \frac{\partial T_{4,\pi}}{\partial x} + w_{y,\pi} \frac{\partial T_{4,\pi}}{\partial y} \right) = \lambda_4 \left(\frac{\partial^2 T_{4,\pi}}{\partial x^2} + \frac{\partial^2 T_{4,\pi}}{\partial y^2} \right), \tag{1}$$

$$w_{x,\pi} \frac{\partial w_{x,\pi}}{\partial x} + w_{y,\pi} \frac{\partial w_{x,\pi}}{\partial y} = -\frac{1}{\rho_4} \frac{\partial p_{4,\pi}}{\partial x} + \nu_4 \left(\frac{\partial^2 w_{x,\pi}}{\partial x^2} + \frac{\partial^2 w_{x,\pi}}{\partial y^2} \right), \tag{2}$$

$$w_{x,\pi} \frac{\partial w_{y,\pi}}{\partial x} + w_{y,\pi} \frac{\partial w_{y,\pi}}{\partial y} = -\frac{1}{\rho_4} \frac{\partial p_{4,\pi}}{\partial y} +$$
(3)

$$+ v_4 \left(\frac{\partial^2 w_{y,\pi}}{\partial x^2} + \frac{\partial^2 w_{y,\pi}}{\partial y^2} \right) + g \beta_{4,\pi} \left(T_{4,\pi} - T_7 \right), \qquad (5)$$

$$\frac{\partial W_{x,\Pi}}{\partial x} + \frac{\partial W_{y,\Pi}}{\partial y} = 0, \qquad (4)$$

$$c_4 \rho_4 \left(w_{x,o} \frac{\partial T_{4,o}}{\partial x} + w_{y,o} \frac{\partial T_{4,o}}{\partial y} \right) = \lambda_4 \left(\frac{\partial^2 T_{4,o}}{\partial x^2} + \frac{\partial^2 T_{4,o}}{\partial y^2} \right), \tag{5}$$

$$w_{x,o}\frac{\partial w_{x,o}}{\partial x} + w_{y,o}\frac{\partial w_{x,o}}{\partial y} = -\frac{1}{\rho_4}\frac{\partial p_{4,o}}{\partial x} + \nu_4 \left(\frac{\partial^2 w_{x,o}}{\partial x^2} + \frac{\partial^2 w_{x,o}}{\partial y^2}\right),\tag{6}$$

$$w_{x,o} \frac{\partial w_{y,o}}{\partial x} + w_{y,o} \frac{\partial w_{y,o}}{\partial y} = -\frac{1}{\rho_4} \frac{\partial p_{4,o}}{\partial y} + v_4 \left(\frac{\partial^2 w_{y,o}}{\partial x^2} + \frac{\partial^2 w_{y,o}}{\partial y^2} \right) + g\beta_{4,o} \left(T_{4,o} - T_7 \right),$$

$$\frac{\partial w_{x,o}}{\partial x} + \frac{\partial w_{y,o}}{\partial y} = 0;$$
(8)

 в тепловой изоляции и покровном слое для подающего и обратного трубопроводов уравнениями теплопроводности в цилиндрической системе координат:

$$\frac{\partial^2 T_{i,\pi}}{\partial x^2} + \frac{1}{x} \frac{\partial T_{i,\pi}}{\partial x} + \frac{1}{x^2} \frac{\partial^2 T_{i,\pi}}{\partial \Theta^2} = 0, \qquad i=2, 3, \tag{9}$$

$$\frac{\partial^2 T_{i,o}}{\partial x^2} + \frac{1}{x} \frac{\partial T_{i,o}}{\partial x} + \frac{1}{x^2} \frac{\partial^2 T_{i,o}}{\partial \Theta^2} = 0, \qquad i=2, 3, \tag{10}$$

– в стенах канала и грунте уравнениями теплопроводности в декартовой системе координат:

$$\frac{\partial^2 T_i}{\partial x^2} + \frac{\partial^2 T_i}{\partial y^2} = 0, \quad i=5, 6.$$
(11)

При постановке задачи принималось, что на внутренних поверхностях тепловой изоляции подающего и обратного трубопроводов поддерживается постоянная температура, равная температуре теплоносителя в трубе:

$$T_{2,\pi} = T_{\pi} = \text{const} , \qquad (12)$$

$$T_{2,o} = T_o = \text{const} \,. \tag{13}$$

На границе раздела «грунт – окружающая среда» осуществляются условия конвективного теплообмена:

$$-\lambda_6 \frac{\partial T_6}{\partial y} = \alpha \left(T_6 - T_7 \right). \tag{14}$$

В местах соприкосновения слоев реализуются условия идеального теплового контакта:

$$\lambda_i \frac{\partial T_i}{\partial x} = \lambda_j \frac{\partial T_j}{\partial x}, \quad T_i = T_j, \ i, j = 4, 5, 6, i \neq j,$$
(15)

$$\lambda_i \frac{\partial T_i}{\partial y} = \lambda_j \frac{\partial T_j}{\partial y}, \quad T_i = T_j, \ i, j = 4, 5, 6, i \neq j,$$
(16)

$$\lambda_i \frac{\partial T_{i,\pi}}{\partial x} = \lambda_j \frac{\partial T_{j,\pi}}{\partial x}, \quad T_i = T_j, \qquad i, j=2, 3, i \neq j, \tag{17}$$

$$\lambda_i \frac{\partial T_{i,n}}{\partial y} = \lambda_j \frac{\partial T_{j,n}}{\partial y}, \quad T_i = T_j, \qquad i, j = 2, 3, i \neq j,$$
(18)

$$\lambda_i \frac{\partial T_{i,o}}{\partial x} = \lambda_j \frac{\partial T_{j,o}}{\partial x}, \quad T_i = T_j, \qquad i, j=2, 3, i \neq j,$$
(19)

$$\lambda_i \frac{\partial T_{i,o}}{\partial y} = \lambda_j \frac{\partial T_{j,o}}{\partial y}, \quad T_i = T_j, \qquad i, j = 2, 3, i \neq j.$$
(20)

Для тепловой изоляции и покровного слоя подающего и обратного трубопроводов выполняются условия симметрии:

© В.Ю. Половников

$$\frac{\partial T_{i,\pi}}{\partial \Theta} = 0, \qquad i=2, 3, \qquad (21)$$

$$\frac{\partial T_{i,o}}{\partial \Theta} = 0, i=2, 3.$$
(22)

На достаточно большом расстоянии от теплопровода (рис. 1,*a*) градиенты температур в грунте равны нулю:

$$\frac{\partial T_6}{\partial x} = 0, \quad x \to \pm \infty , \tag{23}$$

$$\frac{\partial T_6}{\partial y} = 0, \quad y \to -\infty.$$
⁽²⁴⁾

Скорость движения воздуха в полостях двухячейкового канала (рис. 1,a) на внешней поверхности покровных слоев подающего и обратного трубопроводов, а также на внутренней поверхности стенок канала равна нулю (условия прилипания):

$$v_{x,\pi} = w_{y,\pi} = 0, (25)$$

$$w_{x,0} = w_{y,0} = 0. (26)$$

Обозначения: T – температура, К; x, y, Θ – координаты; λ – коэффициент теплопроводности, Вт/(м·К); c – теплоемкость, Дж/(кг·К); ρ – плотность, кг/м³; p – давление, Па; w_x, w_y – составляющие скорости в проекции на оси координат, м/с; ν – кинематическая вязкость, м²/с; g – ускорение силы тяжести, м/с²; β – коэффициент температурного расширения, К⁻¹; α – коэффициент теплоотдачи, Вт/(м²·К).

Индексы: 1-6 – номера областей расчета (рис. 1,*a*); 7 – окружающая среда; п, о – подающий и обратный трубопроводы соответственно.

Метод решения и исходные данные

Задача (1)–(26) решена, по аналогии с [3], методом конечных элементов с использованием аппроксимации Галеркина. Исследования проводились на неравномерной конечно-элементной сетке, состоящей из 55403 элементов, при этом каждая воздушная полость двухячейкового канала (рис. 1,*a*) содержала 24482 элемента. Количество элементов выбиралось из условий сходимости решения, сгущение сетки проводилось в соответствии с [3] методом Делоне.

При постановке задачи предполагалось использование области решения неограниченных размеров (выражения (23) и (24)), однако при проведении численного анализа тепловых потерь и тепловых режимов рассматриваемой системы использовалась расчетная область размерами 6х10 метров. Размеры расчетной области выбирались на основании результатов предыдущих исследований [3] таким образом, чтобы относительное изменение градиентов температур на границах области не превышало 0,5 %.

Исследования проводились для теплопровода, конфигурация которого подобна конфигурации, описанной в работе [3]. Рассматривался типичный для тепловых сетей РФ сборный двухячейковый железобетонный канал, скомпонованный из двух каналов марки КЛс120-120 с толщиной стенок 135 мм [9] и трубопроводы с диаметрами условного прохода 600 мм [9]. Расстояние от поверхности грунта до верхней части канала составляло H = 1 метр (рис. 1,*a*). Полости двухячейкового канала занимал воздух с относительной влажностью 90%.

Температуры внутренних поверхностей слоев тепловой изоляции подающего $T_{\rm n}$ и обратного $T_{\rm o}$ трубопроводов принимались в соответствии со среднегодовыми температурами теплоносителей в водяных тепловых сетях [1] (табл. 1). Температура окружающей среды принималась равной средней температуре воздуха за отопительный

Проблемы энергетики, 2017, том 19, № 5-6

период в городе Томск [2] – T_7 =264,2 К. Коэффициент теплоотдачи от грунта к внешней среде по аналогии с [3] принимался равным 15 Вт/(м²·К).

Таблица 1

C_{j}	Среднегодовые температуры теплоносителей [1]									
	Т. б.	Температурный график, С								
	труоопровод	95/70	150/70	180/70						
	<i>Т</i> _п , К	338	363	383						
	<i>Т</i> _о , К	323								

В табл. 2 приведены значения [3] теплофизических характеристик материалов и веществ, использовавшихся при проведении численных исследований.

Таблица 2

Материал	Тепловая изоляция	Покровный слой	Стенка канала	Грунт
λ, Вт/(м·К)	0,059	0,87	1,54	1,3
<i>с</i> , Дж/(кг·К)	670	837	887	959
ρ, кг/м ³	206	1750	2200	1700

Tonnohuouuookuo vonoktonuotuku votonuo [2]

Результаты численного моделирования

Основные результаты численного анализа тепловых потерь и тепловых режимов подземных двухячейковых канальных тепловых сетей приведены в табл. 3 и на рис. 2–4 для условий реализации температурного графика 95/70 С (табл. 1).

Обоснованность и достоверность результатов исследований следует из проведенных проверок используемых методов на сходимость и устойчивость решений на множестве сеток, выполнения условий баланса энергии на границах области расчета. Относительная погрешность расчетов во всех вариантах численного анализа не превышала 0,5 %, что приемлемо при оценке тепловых потерь на тепловых сетях. Сопоставление результатов математического моделирования (табл. 3, рис. 2–4) с известными данными других авторов [10] и предыдущими теоретическими исследованиями теплопереноса в зонах размещения подземных теплотрасс [3] позволяет говорить об их хорошем качественном и количественном согласовании.

В табл. З приведены величины тепловых потерь Q_2 рассматриваемого двухячейкового теплопровода (рис. 1, *a*) и Q_1 одноячейкового теплопровода (рис. 1, *б*) [3] в зависимости от реализуемого температурного графика.

Таблица 3

respirater meneritier analisa reinterabilit herepa					
Terrent C	Q_2	$Q_1[3]$	S 0/		
Температурный график, С	Вт/м		0, %		
95/70	144,80	146,58	1,21		
150/70	176,87	174,16	-1,56		
180/70	195,52	196,46	0,48		

Результаты численного анализа тепловых потерь

Сопоставление между собой значений Q_2 и Q_1 свидетельствует о том, что расхождение между ними δ не превышает 2 % и объясняется преимущественно корреляцией накапливаемых погрешностей численных расчетов. По этой причине оценку тепловых потерь двухячейковых канальных тепловых сетей можно проводить с использованием более простой математической модели [3] или аналитической методики [1].

Рис. 2. Температурное поле грунта в зоне прокладки двухячейкового теплопровода

На рис. 2 показано типичное температурное поле грунта в зоне прокладки двухячейкового теплопровода.

Распределения температур в рассматриваемой области решения свидетельствуют о том, что изотермические линии (рис. 2) сгущаются непосредственно над теплопроводом и более разрежены при удалении от него, что соответствует представлениям о процессах теплопроводности и качественно согласуется с результатам исследований [3, 10]. Рис. 2 наглядно демонстрирует заметную деформацию температурного поля в зоне прокладки подземных двухячейковых канальных тепловых сетей по сравнению с одноячейковыми. При одноячейковом варианте размещения температурное поле в грунте является симметричным относительно вертикальной оси канала [3] и является следствием относительно равномерного распределения температур воздуха в полости канала. В случае двухячейкового канала наблюдается смещение изотерм в сторону более нагретой ячейки канала, в которой размещен подающий трубопровод (рис. 2).

На рис. 3, 4 показаны типичное поле скорости и линии тока в полостях двухячейкового канала теплопровода. Структура течения воздуха в этом случае существенно отличается от описанной в [3] и состоит из основного циркуляционного течения и нескольких вторичных вихрей (рис. 3) в ячейках канала. Основное циркуляционное течение в каждой из ячеек, в соответствии с законами естественной конвекции в замкнутом объеме, направлено от более нагретой части канала к менее нагретой в верхней части воздушной полости и в обратном направлении в нижней части. Наличие вторичных вихрей обусловлено наличием перегородки между трубопроводами, их влиянием на основное циркуляционное течение и наличием достаточно интенсивного теплоотвода по периметру канала.

Рис. 3. Линии тока воздуха в полостях двухячейкового канала теплопровода

Рис. 4. Типичное поле скорости потока воздуха в полостях двухячейкового канала теплопровода

По результатам численного моделирования было установлено, что, в зависимости от реализуемого температурного графика, максимальная скорость движения воздуха в полостях двухячейкового канала (рис. 4) лежит в диапазоне от 0,0225 до 0,0419 м/с, определяется величиной подъемной силы, учтенной в уравнениях (3) и (7) и не более чем на 10 % превышает соответствующие значения скоростей для одноячейкового теплопровода [3].

Таким образом, тепловые режимы двухячейковых теплопроводов существенно отличаются от режимов работы тепловых сетей в одноячейковом исполнении, однако учитывая незначительное расхождение в расчетных значениях их тепловых потерь (табл. 3) можно обоснованно утверждать о возможности проведения оценки масштабов потерь тепловой энергии двухячейковыми канальными тепловыми сетями с использованием более

© В.Ю. Половников

простой модели [3] или аналитической методики [1], предназначенных для расчета теплопотерь одноячейковых теплопроводов.

Заключение

Установлены масштабы тепловых потерь и закономерности теплопереноса в зонах размещения подземных тепловых сетей при прокладке трубопроводов в двухячейковых каналах.

Показана возможность проведения анализа тепловых потерь двухячейковых канальных тепловых сетей с использованием модели и методики, предназначенных для расчета теплопотерь одноячейковых теплопроводов.

Литература

1. СП 61.13330.2012. Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003. М.: Минрегион России, 2012. 52с.

2. Соколов Е.Я. Теплофикация и тепловые сети. М.: Издательский дом МЭИ, 2009. 472с.

3. Кузнецов Г.В., Половников В.Ю. Численное исследование тепловых режимов двухтрубных канальных теплопроводов с использованием кондуктивно-конвективной модели теплопереноса // Теплоэнергетика. 2012. № 4. С. 48–52.

4. Степанов А.В., Егорова Г.Н. Моделирование теплообмена сетевого трубопровода и водопровода в условиях Севера // Инженерно-физический журнал. 2016. Т.89, № 5. С. 1296–1300.

5. Firmansyah, T., Rakib, M.A., George, A., Al Musharfy, M., Suleiman, M.I. Transient cooling simulation of atmospheric residue during pipeline shutdowns // Applied Thermal Engineering, 2016. Vol. 106. Pp. 22-32.

6. Rossi Di Schio, E., Lazzari, S., Abbati, A. Natural convection effects in the heat transfer from a buried pipeline // Applied Thermal Engineering, 2016. Vol. 102. Pp. 227-233

7. Oosterkamp, A., Ytrehus, T., Galtung, S.T. Effect of the choice of boundary conditions on modelling ambient to soil heat transfer near a buried pipeline // Applied Thermal Engineering, 2016. Vol. 100. Pp 367-377.

8. Deng, G., Sun, L., Shou, B., Tian, W., Li, H. Calculation methods for the minimum wall temperature of ground gas pipelines in a low temperature environment // Natural Gas Industry, 2013. Vol. 33. Issue 7. Pp. 96-100.

9. Справочник проектировщика. Проектирование тепловых сетей. / Под ред. А. А. Николаева. Курган: Интеграл, 2010. 357с.

10. Иванов В. В., Вершинин Л. Б. Распределение температур и тепловых потоков в зоне подземных теплотрасс // Вторая Российская национальная конференция по теплообмену: Теплопроводность, теплоизоляция. М.: Издательство МЭИ, 1998. Т. 7. С. 103–105.

Авторы публикации

Половников Вячеслав Юрьевич – канд. техн. наук, доцент кафедры «Теоретическая и промышленная теплотехника» Национального исследовательского Томского политехнического университета (НиТПУ). E-mail: heatloss@mail.

References

1.SP 61.13330.2012. Teplovaya izolyatsiya oborudovaniya i truboprovodov. Aktualizirovannaya redaktsiya SNiP 41-03-2003. – Moscow: Minregion Rossii, 2012. – 52p.

2. Sokolov E. Ya. Teplofikatsiya i teplovye seti. – Moscow: Izdatelskiy dom MEI, 2009. – 472p.

Проблемы энергетики, 2017, том 19, № 5-6

3.Kuznetzov G.V., Polovnikov V.Yu. Numerical investigation of thermal regimes in twin tube channel heat pipelines using conductive convective model of heat transfer // Thermal Engineering (English translation of Teploenergetika), April 2012. Volume 59. Issue 4. Pp. 310–315. DOI: 10.1134/S0040601512020103

4.Stepanov A.V., Egorova G.N. Simulation of Heat Transfer of Heating-System and Water Pipelines Under Northern Conditions // Journal of Engineering Physics and Thermophysics (English translation of Inzhenerno-fizicheskiy zhurnal), September 2016. Volume 89. Issue 5. Pp. 1284–1288. DOI: 10.1007/s10891-016-1493-6

5.Firmansyah, T., Rakib, M.A., George, A., Al Musharfy, M., Suleiman, M.I. Transient cooling simulation of atmospheric residue during pipeline shutdowns // Applied Thermal Engineering, Volume 106, 5 August 2016, Pages 22-32. DOI: 10.1016/j.applthermaleng.2016.05.179

6.Rossi Di Schio, E., Lazzari, S., Abbati, A. Natural convection effects in the heat transfer from a buried pipeline // Applied Thermal Engineering, Volume 102, 5 June 2016, Pages 227-233. DOI: 10.1016/j.applthermaleng.2016.03.140

7.Oosterkamp, A., Ytrehus, T., Galtung, S.T. Effect of the choice of boundary conditions on modelling ambient to soil heat transfer near a buried pipeline // Applied Thermal Engineering, Volume 100, 5 May 2016, Pages 367-377. DOI: 10.1016/j.applthermaleng.2016.01.057

8.Deng, G., Sun, L., Shou, B., Tian, W., Li, H. Calculation methods for the minimum wall temperature of ground gas pipelines in a low temperature environment // Natural Gas Industry, Volume 33, Issue 7, July 2013, Pages 96-100. DOI: 10.3787/j.issn.1000-0976.2013.07.017

9.Spravochnik proektirovshchika. Proektirovanie teplovykh setey. / Pod red. A. A. Nikolaeva. – Kurgan: Integral, 2010. – 357 p.

10. Ivanov V. V., Vershinin L. B. Raspredelenie temperatur i teplovykh potokov v zone podzemnykh teplotrass // Vtoraya Rossiyskaya natsional'naya konferentsiya po teploobmenu: Teploprovodnosť, teploizolyatsiya. – Moscow: Izdatelstvo MEI, 1998. V. 7. Pp. 103–105.

Authors of the publication

Polovnikov Vyacheslav Yurevich – cand. sci. (techn.), associate professor of department «Theoretical and industrial heat engineering» of Tomsk Polytechnic University. E-mail: heatloss@mail.

Поступила в редакцию

27 апреля 2017 г.