

УДК 541.123.546.2183

ЭКСТРАКЦИЯ ЭНЕРГОНАСЫЩЕННЫХ КОМПОНЕНТОВ ИЗ СГОРАЮЩИХ МАТЕРИАЛОВ В СРЕДЕ ЧИСТОГО И МОДИФИЦИРОВАННОГО СВЕРХКРИТИЧЕСКОГО CO₂

Т.Р. Билалов^{1,2}, Ф.М. Гумеров²

Резюме: Представлены результаты экспериментального исследования растворимости тротила в чистом и модифицированном сверхкритическом диоксиде углерода (СК-СО₂). Исследования проведены в температурном диапазоне 308,15–333,15 К и интервале давлений 10,0–35,0 МПа на сверхкритической флюидной экстракционной установке циркуляционного типа марки R-401 фирмы «Reaction Engineering Ink.» (Южная Корея). Приведены результаты описания экспериментальных данных с использованием уравнения Пенга-Робинсона. Представлены результаты СК-СО₂-экстракционного извлечения тротила из образцов жесткого сгорающего картуза и показана эффективность этого процесса.

Ключевые слова: сверхкритический диоксид углерода, тротил, растворимость, динамический режим, CK-CO₂-экстракция.

EXTRACTION OF ENERGY-DENSE COMPONENTS OF THE COMBUSTIBLE MATERIALS IN THE ENVIRONMENT PURE AND MODIFIED SUPERCRITICAL ${\rm CO_2}$

T.R. Bilalov^{1,2}, F. M. Gumerov²

Abstract: The results of experimental studies of solubility of TNT in pure and modified supercritical carbon dioxide (SC-CO₂) are presented. Studies were carried out in a temperature range of 308.15-333.15 K and pressure interval 10.0-35.0 MPa on circulating type supercritical fluid extraction plant, R-401 produced by "Reaction Engineering Ink." (South Korea). Experimental solubility data was described using the Peng-Robinson equation of state. The results of SC-CO₂ - extraction of TNT from samples of hard burning materials and the efficiency of this process are shown.

Key words: supercritical carbon dioxide, TNT, solubility, dynamic mode, SC-CO₂ - extraction.

¹ Государственный научно-исследовательский институт химических продуктов, г. Казань, Россия

² Казанский национальный исследовательский технологический университет t.bilalov@yandex.ru

¹ Federal state budgetary educational institution of higher professional education "Kazan national research technological University"

² Federal state enterprise "State scientific-research Institute of chemical products t.bilalov@yandex.ru

Введение

В настоящее время при изготовлении изделий (гильз, жестких сгорающих картузов) к метательным зарядам артиллерийских и минометных выстрелов получили широкое распространение сгорающие материалы (СМ). Это обусловлено их значительными преимуществами перед металлическими гильзами или тканевыми картузами [1–3]. Как любая упаковка, жесткие сгорающие картузы (ЖСК) должны, прежде всего, предохранять метательный заряд (МЗ) от внешних атмосферных воздействий с сохранением его свойств при эксплуатации и в течение гарантийных сроков хранения.

Современный технологический процесс изготовления жестких сгорающих картузов (ЖСК) методом фильтрационного литья является многостадийным дискретно-непрерывным процессом с циклической и непрерывной работой аппаратов. Единая технологическая линия стадий производства требует согласования интенсивностей материальных потоков всех операций:

- фазы подготовки компонентов;
- фазы формирования изделий;
- фазы конечных операций [4].

Одним из основных компонентов, применяемых в процессе производства ЖСК, является тротил [5].

Утилизация отработанных или снятых с вооружения ЖСК и отходов их производства является одной из актуальных задач и, прежде всего, с точек зрения экологии и ресурсосбережения. В настоящее время утилизация большей части подобных изделий осуществляется методом их сжигания или подрыва [6, 7, 8], что, несомненно, приносит большой урон окружающей среде вследствие выделения вредных продуктов горения, а также приводит к безвозвратной потере ценных компонентов, пригодных для повторного применения [9]. Особенностью ЖСК является то, что в их состав входит тротил, который используется также и в других видах боеприпасов.

В связи с вышесказанным, актуальной является задача поиска экологически безопасных и экономически целесообразных методов утилизации списанного вооружения. В частности, удаление тротила из жестких сгорающих картузов превращает их в относительно безопасный материал, пригодный для дальнейшей переработки. Экономически эффективное удаление тротила может быть осуществлено методом СК-СО₂-экстракционного извлечения, поскольку аналогичный предлагаемому процесс удаления коксовых отложений с поверхности различных отработанных катализаторов уже показал свою эффективность [10, 11, 12].

Оценка целесообразности и жизнеспособности этого процесса предполагает наличие надежных данных по растворимости тротила в чистом и модифицированном $CK-CO_2$ в широком диапазоне изменения параметров состояния, подкрепленных результатами исследования $CK-CO_2$ -экстракционного процесса. Недостаточность литературных данных по растворимости и полное отсутствие результатов исследования $CK-CO_2$ -экстракционного извлечения тротила из жестких сгорающих картузов определило предмет настоящего исследования.

Экспериментальная часть

В работе использованы следующие реагенты:

- углекислота первого или высшего сорта с содержанием СО₂ не менее 99,5 %;
- тротил марки Б, соответствующий ГОСТ 4117-78;
- образцы ЖСК, в состав которых входит тротил в количестве 25% масс;
- этанол и ацетон, марок ЧДА.

Для исследования растворимости тротила в чистом и модифицированном сверхкритическом диоксиде углерода использована экспериментальная установка циркуляционного типа (рис. 1), созданная на базе сверхкритической флюидной

экстракционной системы R-401, произведенной фирмой «Reaction Engineering Ink.» (Южная Корея). Установка реализует динамический режим исследования искомой величины и позволяет проводить измерения при температурах до 100° С и давлениях до 40,0 МПа.

Ресивер 3 и экстракционная ячейка 4 имеют объемы, соответственно, 1,5 и 0,5 литра. Ресивер минимизирует пульсации давления и расхода газа. Насос 2 для подачи диоксида углерода имеет максимальную производительность 100 мл/мин. Производительность насоса регулируется с помощью изменения давления сжатого воздуха, подаваемого компрессором. Давление в системе контролируется датчиком давления класса точности 0,5, данные от которого поступают на вторичный прибор, в итоге управляющий насосом. Точность поддержания давления составляет $\pm 0,025$ МПа.

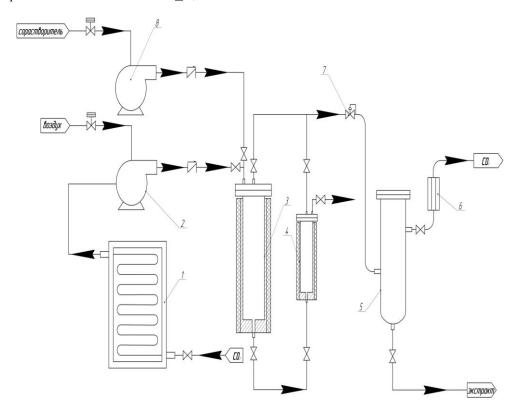


Рис. 1. Схема экспериментальной установки: I – холодильник; 2 – насос для подачи CO_2 в систему; 3 – ресивер с системой нагрева и термостатирования; 4 – экстракционная ячейка с системой нагрева и термостатирования; 5 – сепаратор; 6 – массовый расходомер – регулятор расхода газа; 7 – регулятор давления «до себя»; 8 – насос для подачи сорастворителя; 9 – образцовый манометр

В системе присутствует образцовый манометр 8 класса точности 0,15, показания которого и принимаются в качестве рабочих. Расход газа контролируется и измеряется регулятором массового расхода 6, произведенным фирмой Bronkhorst (марка El-Flow F-201 CV), и расположенным на выходе из сепаратора 5. Расходомер класса точности 0,25 позволяет регулировать расход CO_2 в диапазоне от 0 до 0,59 г/мин. Система термостатирования позволяет поддерживать заданные температуры с точностью \pm 0,1 $^{\rm O}$ C. Для подачи сорастворителя используется насос марки Eldex (модель Optos Pump 2SL).

В рамках методики проведения экспериментов навеска исследуемого вещества известной массы помещается в ячейку 4. Газ из баллона поступает в ванну холодильного аппарата 1, охлажденную до +0.5 $^{\rm O}$ С, где происходит его ожижение, и с помощью насоса 2

жидкий СО₂ подается в ресивер 3. Там происходит нагрев газа до достижения им заданной температуры, и лишь затем диоксид углерода подается в ячейку с исследуемым веществом 4. СО₂ растворяет в себе определенное количество исследуемого вещества и, минуя регулятор давления «до себя», поступает в сепаратор. В результате падения давления и растворяющей способности диоксида углерода, имеющих место в сепараторе, исследуемое вещество выпадает в осадок и собирается на дне сепаратора, а газообразный диоксид углерода через выход, расположенный в верхней части сепаратора, направляется в расходомер – регулятор расхода газа, который контролирует массовый расход СО2 и одновременно измеряет количество газа, пройденного через систему. После того, как через систему пройдет достаточное количество диоксида углерода, ячейка 4 отсекается вентилями на входе и выходе, давление в ней стравливается до атмосферного, навеска вещества извлекается и повторно взвешивается. По разнице начальной и конечной масс исследуемого вещества, а также количеству диоксида углерода в процессе растворения оценивается концентрация растворенного вещества в растворителе. Предельность этой концентрации или соответствие понятию растворимости возможно лишь осуществлении процесса растворения с достаточным временем контакта в системе «растворяемое вещество – растворитель». Расход СК-СО₂, отвечающий методике измерения растворимости, устанавливается на основе изучения зависимости концентрации растворяемого вещества в сверхкритическом флюидном растворителе от расхода этого растворителя. В качестве режимного значения расхода диоксида углерода для основных измерений выбирается значение из диапазона, в котором отсутствует зависимость концентрации растворяемого вещества в сверхкритическом диоксиде углерода от его Корректность вышеописанной методики измерения растворимости работоспособность экспериментальной установки были подтверждены результатами пробных измерений растворимости стеариновой кислоты в чистом сверхкритическом диоксиде углерода, данные по которым представлены в работе [13].

Результаты и обсуждение

Как было отмечено выше, основному этапу исследования растворимости предшествует процедура оценки диапазона изменения расхода сверхкритического флюидного растворителя в проточной системе, обеспечивающего равновесную концентрацию растворенного вещества в СК-СО₂. Исследования [14] показали, что в диапазоне расходов 0–0,5 г/мин концентрация тротила в СК-СО₂ практически не зависит от величины расхода растворителя, что является свидетельством равновесности этой концентрации и ее соответствия понятию растворимости. Как следствие, именно вышеотмеченный диапазон изменения расхода растворителя в проточной системе и был выбран в качестве одного из режимных параметров при проведении основных измерений. Также был определен диапазон концентраций сорастворителя, отвечающий максимальной концентрации исследуемого вещества в сверхкритическом диоксиде углерода, модифицированном полярной добавкой. Результаты показаны на рис. 2.

Далее было проведено исследование растворимости тротила в чистом и модифицированном сверхкритическом диоксиде углерода при расходе флюида соответственно 0,5 г/мин и концентрации сорастворителя 2,5 % масс.

Результаты, представленные в работе [14], дополненные в настоящей работе, показаны на рис. 3. В качестве полярных добавок были выбраны этанол и ацетон с полярностью, соответственно, 2,28 Дебая и 2,71 [12]. Выбор этих сорастворителей обусловлен их широким применением в этом качестве и тем, что тротил достаточно хорошо растворяется в них [15].

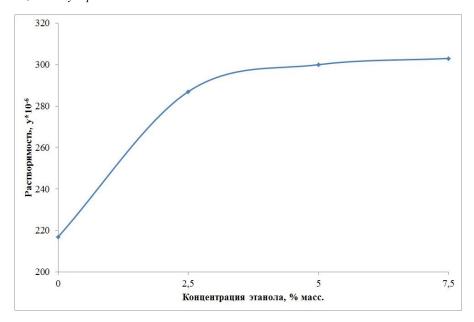


Рис. 2. Зависимость растворимости тротила в СК- ${\rm CO_2}$ от концентрации сорастворителя (этанола) при T = 308,15 К и P = 10 МПа

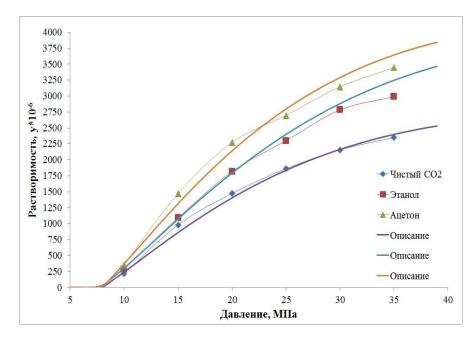


Рис. 3. Растворимость тротила в чистом и модифицированном СК- ${\rm CO_2}$ при T=308,15 K, концентрация сорастворителей = 2,5% масс.

Погрешность измерения растворимости, рассчитанная в соответствии с методикой [16, 17], изменяется в диапазоне от 5,81 до 9,93 %.

Результаты экспериментального исследования растворимости тротила в сверхкритическом диоксиде углерода описаны в соответствии с моделью, широко апробированной в работах [10–13, 18].

Согласно этой модели, позволяющей описывать растворимость низколетучих и несжимаемых веществ в сверхкритических флюидных средах,

 $ln(y)=ln(P_v/P)-ln(\Phi_2)+PV_m/RT$,

где y — растворимость вещества в сверхкритическом флюидном растворителе, мольн. доли; P_v — давление насыщенных паров растворяемого вещества при температуре T; P — давление в системе; Φ_2 — коэффициент летучести растворяемого вещества во флюиде; V_m — приведенный мольный объем чистого растворяемого вещества; R — универсальная газовая постоянная.

Критические параметры CO_2 взяты из справочника [19]. Поскольку в литературных источниках отсутствуют достоверные данные по критическим параметрам и давлению насыщенных паров тротила, то значения этих величин установлены с использованием различных расчетных методик. В частности, для определения критических параметров тротила выбран метод Дорна [20].

В результате расчетов получены следующие значения искомых величин для тротила: $T_{\kappa p}$ =783,01 К; $P_{\kappa p}$ =3,01 МПа; w=0,669.

В дополнение к коэффициенту бинарного взаимодействия, в качестве подгоночного параметра использовано давление насыщенных паров тротила. Целесообразность такого решения, имеющая место в некоторых случаях, обоснована в работах [13, 21].

Результаты описания растворимости тротила в $CK-CO_2$, а также полученные значения коэффициентов бинарного взаимодействия и давления насыщенных паров тротила показаны на рис. 3, а также в табл. 1.

 $\label{eq: Таблица 1}$ Итоговые значения коэффициентов бинарного взаимодействия m_{ij} и давления насыщенных паров

Температура, К	m	21	$P_{\text{паров}}$, Па	Погрешность описания				
308,15	0,	24	0,0005	7,319				
313,15	0,31		0,003	5,377				
318,15	0,	45	0,041	3,968				
323,15	0,	54	0,18	7,474				
328,15	0,	62	0,65	4,964				
333,15	0	,6	0,97	8,117				
<i>T</i> =308,15 K								
Cорастворитель ¹	m_{21}	m_{23}	$P_{\text{паров}}$, Па	Погрешность описания				
Этанол	0,27	2,66	0,0003	4,793				
Ацетон	0,31	2,6	0,0012	6,149				
1 концентрация сорастворителя = 2,5% масс.; расход СК- $\mathrm{CO_2} = 0,5$ гр/мин.								

Исследована кинетика экстракционного извлечения тротила из образцов ЖСК с использованием чистого и модифицированного сверхкритического диоксида углерода. Процесс реализован при температурах 313,15; 323,15; 333,15 К, давлениях 10, 20 и 30 МПа и расходе экстрагента 0,5 гр/мин. Кинетика экстракционного извлечения описана с использованием модели, представленной в работе [22]. Эта модель предполагает, что равновесие на поверхности обрабатываемой матрицы (характеристический параметр h) определяется двумя этапами массопереноса, такими как внутренняя диффузия и равновесная десорбция. А само моделирование осуществляется с использованием

экспериментально полученного коэффициента массопереноса k_f . В основе модели [22] приняты следующие предположения и допущения:

- 1. Система включает в себя неподвижный слой, состоящий из двух фаз:
- а. Твердая фаза, из которой экстрагируется в данном случае тротил;
- b. Сверхкритическая флюидная фаза с растворенным в ней тротилом.
- 2. Линейная зависимость концентрации растворяемого вещества в твердой и флюидной фазах.
- 3. Расход, плотность и вязкость сверхкритической флюидной фазы в процессе считаются постоянными; перепады давления и градиенты температуры считаются пренебрежимо малыми.
 - 4. Растворяемое вещество растворяется во флюидном растворителе без остатка.

Авторами разработанной модели [22] в открытый доступ представлена компьютерная программа, написанная на базе программного пакета *MATLAB*, позволяющая описывать процесс экстракции, осуществленный на лабораторном уровне, и масштабировать полученные результаты до промышленных объемов.

Результаты экспериментального исследования кинетики экстракционного извлечения тротила из образцов ЖСК с использованием чистого и модифицированного сверхкритического диоксида углерода показали, что с ростом давления и температуры процесса эффективность экстракции возрастает, что связано с увеличением плотности сверхкритического флюида. Последнее наглядно представлено на рис. 4, на котором изображена зависимость степени экстракции тротила из образцов ЖСК массой около 1,1 г от количества сверхкритического диоксида углерода при давлении 20 МПа и различных температурах. Из графика видно, что на всех изотермах достигается полная экстракция тротила из исследуемых образцов, однако процесс идет с разной интенсивностью, а также требует для своего завершения разное, но относительно небольшое количество флюида. В то же время при снижении давления до 10 МПа процесс экстракции на изотерме 313,15 К потребует для своего завершения существенно большее количество экстрагента (рис. 5), что делает его экономически невыгодным. При этом добавление всего лишь 2,5% масс. модификатора позволяет сделать процесс существенно более эффективным. К примеру, в случае добавления ацетона, при параметрах Т=313,15 К и Р=10 МПа 100%, количество флюида, необходимого для полной экстракции тротила, уменьшается более чем на 25 %, а одновременное увеличение температуры и давления до 333,15 К и 30 МПа соответственно, снижает потребность в экстрагенте почти в пять раз (табл. 2). Параметры модели, рассчитанные при описании процесса экстракции, также представлены в табл. 2.

Несмотря на то, что эти параметры получены симплекс-методом в рамках пакета *MATLAB*, и, по словам авторов, не всегда имеют под собой физический смысл [22], тем не менее, позволяют косвенно судить об интенсивности процесса экстракции, а также влиянии на него таких параметров, как линейная скорость потока сверхкритического флюидного экстрагента и степень заполнения экстракционной ячейки исходным сырьем.

Последнее хорошо демонстрируется на следующем примере. При описании процесса экстракции при температуре $T=333,15\,$ K и $P=10\,$ МПа получены следующие значения параметров модели: $k_f=0,0069\,$ мин $^{-1},\ h=79,57.$ При этом линейная скорость потока флюидного экстрагента, в соответствии с проведенными расчетами, составляет $0,26\,$ см/мин. Согласно модели увеличение скорости потока до значений $0,5\,$ см/мин, $1\,$ см/сек и $1,5\,$ см/сек при сохранении рассчитанных значений k_f и h приводит к интенсификации процесса экстракции (рис. 5). В силу инструментальных ограничений примененного в настоящей работе оборудования, экспериментального подтверждения эта тенденция в настоящей работе не получила. Однако в работе [22] ее корректность, пусть и на другой системе, но экспериментально подтверждена.

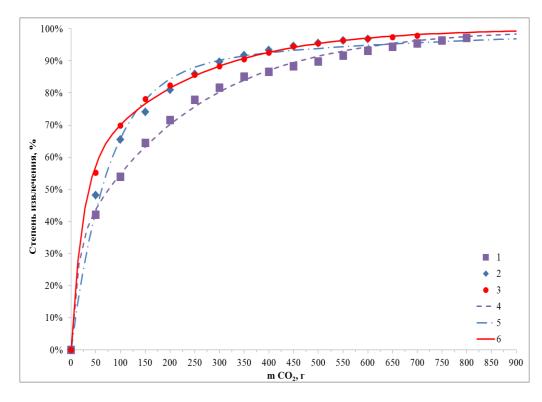


Рис. 4. Кинетика экстракционного извлечения тротила из образцов ЖСК с использованием чистого СК-СО $_2$ при Р=20 МПа: I-313,15 K; 2-323,15 K; 3-333,15 K; 4;5;6- описание

Таблица 2 Параметры модели процесса СК- ${\rm CO}_2$ -экстракционного извлечения тротила из ЖСК

		10 МПа	20 MH.	20 1411				
T, K	Чистый CO ₂	СО2+ этанол	СО ₂ + ацетон	20 МПа	30 МПа			
	<i>k_f</i> , мин ⁻¹							
313,15	0,0174	0,0167	0,0198	0,0334	0,0461			
323,15	0,0056	0,0070	0,0228	0,0052	0,0097			
333,15	0,0069	0,0085	0,0124	0,0182	0,0359			
	h							
313,15	258,05	129,93	84,41	145,93	102,16			
323,15	155,50	81,47	44,38	69,37	42,14			
333,15	79,57	49,34	27,95	74,11	59,23			
	Масса флюида, необходимая для полной экстракции тротила, r^*							
313,15	2170	2100	1600	1870	900			
323,15	2240	2040	800	1500	720			
333,15	1780	1140	460	840	650			
*данные получены экстраполяцией результатов описания экспериментальных точек до								

степени экстракции равной 100% в рамках использованной модели

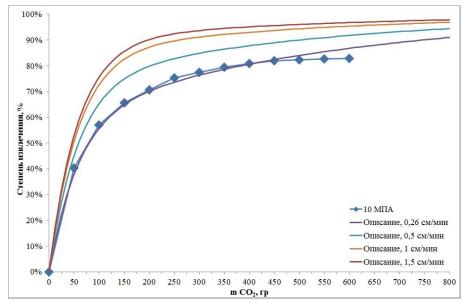


Рис. 5. Влияние линейной скорости потока флюидного экстрагента на кинетику экстракции тротила из ЖСК при T=333,15 К и P=10 МПа

Заключение

Получены новые экспериментальные данные по растворимости тротила в сверхкритическом диоксиде углерода, модифицированном ацетоном и этанолом при температуре 308,15 К в диапазоне давлений 10,0 – 35,0 МПа.

Проведено описание экспериментальных данных с использованием уравнения состояния Пенга-Робинсона. Использование давления насыщенных паров в качестве второго подгоночного параметра в алгоритме описания обеспечивает соответствие погрешностей описания и экспериментальных данных, оцениваемых в приемлемом диапазоне 5.81~%-9.93~%.

Полное СК-CO₂-экстракционное извлечение тротила из образца ЖСК достигается при температуре 313,15 К и давлении 20,0 МПа. Реализованное моделирование экстракционного процесса позволяет его масштабировать на промышленные объемы.

Полученный в настоящей работе результат перспективен в качестве альтернативы методу сжигания, используемому в настоящее время при утилизации тротилсодержащих изделий.

Работа выполнена в ФГБОУ ВО «Казанский национально исследовательский технологический университет» при финансовой поддержке государства в лице Минобрнауки России (соглашение № 14.574.21.0085. Уникальный идентификатор проекта RFMEFI57414 X0085) и гранта РНФ 14-19-00749.

Литература

- 1. Зарядный картуз. / Энциклопедия военных и морских наук / под ред. генерал-лейтенанта Γ .А. Леера СпБ.: «Типография Безобразова и комп.», 1888. Т. 3. 596 с.
- 2. Енейкина Т.А., Солдатов С.В., Гатина Р.Ф., Михайлов Ю.М. Перспективные материалы сгорающих элементов артиллерийских выстрелов //Боеприпасы и спецхимия. 2014. № 4. С. 99–106.
 - 3. Советская военная энциклопедия / под ред. Н.В. Огаркова. М., «Воениздат, 1979, Т.4, 654 С.
- 4. Мадякин В.Ф., Енейкина Т.А., Осипова А.Ю., Солдатов С.В., Игнатьева С.Ю., Гатина Р.Ф. Динамика термо-вакуум-импульсной сушки инертного конструкционного сгорающего материала //Бутлеровские сообщения. 2015. Т. 44, №11. С. 159–165.

- 5. Пат. №2501775 РФ «Способ утилизации отходов материала сгорающей гильзы». 2013, Бюл. № 35.
- 6. Антипов В.В., Антонова Е.В., Бреннер В.А., Воротилин М.С. и др. Вопросы утилизации боеприпасов. Тула: ТулГУ, 2001. 328 С.
- 7. Бреннер В.А., Воротилин М.С., Головин К.А. и др. Некоторые актуальные вопросы перспективных направлений утилизации боеприпасов. Тула: Тульский полиграфист, 2005. 252 с.
- 8. Алешичева Л.И., Воротилин М.С. и др. Физические аспекты утилизации боеприпасов. Тула: ГРИФ и К, 2009. 316 с.
- 9. Смирнов Л.А., Тиньков О.В. Конверсия Ч. 1.Утилизация снятых с вооружения боеприпасов и твердотопливных ракет. М.: ЦНИИНТИКПК, 1996. 132 с.
- 10. Гумеров Ф.М., Сагдеев А.А., Билалов Т.Р. и др. Катализаторы: регенерация с использованием сверхкритического флюидного СО₂-экстракционного процесса. Казань: «Бриг», 2015. 264 с.
- 11. Bilalov T. R., Gumerov F. M. The manufacturing processes and catalyst regeneration / Thermodynamic basis of production processes and regeneration of palladium catalysts using supercritical carbon dioxide. LAP LAMBERT Academic Publishing GmbH & Co. KG., Dudweiler Landstr., Germany, 2011, 153 P.
- 12. Gumerov F.M., Le Neindre B., Bilalov T.R., et al. Regeneration of spent catalyst and impregnation of catalyst by supercritical fluid. New York, Nova publisher, 2016. 168 P.
- 13. Захаров А.А., Билалов Т.Р., Гумеров Ф.М. Растворимость пальмитата аммония в сверхкритическом диоксиде углерода // Сверхкритические Флюиды: Теория и Практика. 2015. Т 10, № 2. С. 60–70.
- 14. Билалов Т.Р., Гумеров Ф.М., Гатина Р.Ф. Растворимость тротила и его экстракционное извлечение из жестких сгорающих картузов с использованием чистого и модифицированного сверхкритического CO₂ // Сверхкритические Флюиды: Теория и Практика. 2016. Т 11, № 4.
- 15. М.А. Сусоров, Ю.П. Широков Химия и технология тротила. изд. Артиллерийской академии РККА им. Дзержинского, 1934. 136 с.
- 16. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. Л.: Энергоатомиздат, 1985. 248 С.
 - 17. Зайдель А. И. Погрешность измерений физических величин. Л.: Наука, 1984. 112 с.
- 18. Mukhopadhyay M.,Rao G.V.R. Thermodynamic modeling for supercritical fluid process design // Ind. Eng. Chem. Res. 1993. № 32, P. 922 930.
- 19. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Физматгиз, 1963. 567 с.
- 20. Dohrn R., Brunner G. An estimation method to calculate Tb, Tc, Pc and ω from the liquid molar volume and the vapor pressure // Proceedings of the 3rd International Symphosium on Supercritical Fluids, Strasburg (France). 1994. T. 1, P. 241 248.
- 21. Атмеет Abed Jaddoa, А.А. Захаров, Т.Р. Билалов, Р.Р. Накипов, И.Р. Габитов, З.И. Зарипов, Ф.М. Гумеров. Некоторые термодинамические свойства смеси «антрацен—диоксид углерода» в сверхкритической флюидной области состояния //Сверхкритические Флюиды: Теория и Практика, 2015. Т.10, №4. С. 18–35.
- 22. S. Lucas, M.P. Calvo, J. Garc´ıa-Serna, C. Palencia, M.J. Cocero Two-parameter model for mass transfer processes between solid matrixes and supercritical fluids: Analytical solution //J. of Supercritical Fluids, 2007, V. 41, №2, P. 257–266.

Авторы публикации

Билалов Тимур Ренатович — ведущий научный сотрудник Федерального казенного предприятия «Государственный научно-исследовательский институт химических продуктов», доцент кафедры «Теоретические основы теплотехники» Казанского национального исследовательского технологического университета (КНИТУ). E-mail: t.bilalov@yandex.ru.

Гумеров Фарид Мухамедович –докт. техн. наук, заведующий кафедрой «Теоретические основы теплотехники» Казанского национального исследовательского технологического университета (КНИТУ). E-mail: gum@kstu.ru.

References

- 1. Zarjadnyj kartuz. Jenciklopedija voennyh i morskih nauk. / pod red. general-lejtenanta G.A. Leera, SpB.: «Tipografija Bezobrazova i komp.», 1888. T. 3. 596 S.
- 2. T.A. Enejkina, S.V. Soldatov, R.F. Gatina, Ju.M. Mihajlov Perspektivnye mpterialy sgorajushhih jelementov artillerijskih vystrelov //Boepripasy i spechimija. 2014, №4, S. 99-106
 - 3. Sovetskaja voennaja jenciklopedija / pod red. N.V. Ogarkova. M., «Voenizdat, 1979, T.4, 654 S.
- 4. V.F. Madjakin, T.A. Enejkina, A.Ju. Osipova, S.V. Soldatov, S.Ju. Ignat'eva, R.F. Gatina Dinamika termo-vakuum-impul'snoj sushki inertnogo konstrukcionnogo sgorajushhego materiala //Butlerovskie soobshhenija. 2015, T. 44, №11, S. 159-165.
- Patent Rossijskoj Federacii №2501775 «Sposob utilizacii othodov materiala sgorajushhej gil'zy»,
 Biul. № 35.
- 6. V.V. Antipov, E.V. Antonova, V.A. Brenner, M.S, Vorotilin i dr. Voprosy utilizacii boepripasov. Tula: TulGU, 2001. 328 S.
- 7. Brenner V.A., Vorotilin M.S., Golovin K.A. i dr. Nekotorye aktual'nye voprosy perspektivnyh napravlenij utilizacii boepripasov. Tula: Tul'skij poligrafist, 2005. 252 S.
- 8. Aleshicheva L.I., Vorotilin M.S. i dr. Fizicheskie aspekty utilizacii boepripasov. Tula: GRIF i K, 2009. 316 S.
- 9. Smirnov. L.A., Tin'kov O.V. Konversija Ch. 1.Utilizacija snjatyh s vooruzhenija boepripasov i tverdotoplivnyh raket. M.: CNIINTIKPK, 1996. 132 S.
- 10. Gumerov F.M., Sagdeev A.A., Bilalov T.R. i dr. Katalizatory: regeneracija s ispol'zovaniem sverhkriticheskogo fljuidnogo SO2-jekstrakcionnogo processa. Kazan': «Brig». 2015. 264 S.
- 11. Bilalov T. R., Gumerov F. M. The manufacturing rrocesses and satalyst regeneration / Thermodynamic basis of production processes and regeneration of palladium catalysts using supercritical carbon dioxide. LAP LAMBERT Academic Publishing GmbH & Co. KG., Dudweiler Landstr., Germany, 2011, 153 P.
- 12. Gumerov F.M., Le Neindre B., Bilalov T.R., et al. Regeneration of spent catalyst and impregnation of catalyst by supercritical fluid. New York, Nova publisher, 2016. 168 R.
- 13. A.A. Zaharov, T.R. Bilalov, F.M. Gumerov Rastvorimost' pal'mitata ammonija v sverhkriticheskom diokside ugleroda // Sverhkriticheskie Fljuidy: Teorija i Praktika, 2015, T 10, № 2. S. 60-70
- 14. T.R. Bilalov, F.M. Gumerov, R.F. Gatina Rastvorimost' trotila i ego jekstrakcionnoe izvlechenie iz zhestkih sgorajushhih kartuzov s ispol'zovaniem chistogo i modificirovannogo sverhkriticheskogo SO2 // Sverhkriticheskie Fljuidy: Teorija i Praktika, 2016. T 11, № 4, v pechati
- 15. M.A. Susorov, Ju.P. Shirokov Himija i tehnologija trotila. izd. Artillerijskoj akademii RKKA im. Dzerzhinskogo, Leningrad, 1934, 136 S.
- 16. Novickij P. V., Zograf I.A. Ocenka pogreshnostej rezul'tatov izmerenij. L.: Jenergoatomizdat, 1985. 248 S.
 - 17. Zajdel' A. I. Pogreshnost' izmerenij fizicheskih velichin. L.: Nauka, 1984. 112 S.
- 18. Mukhopadhyay M.,Rao G.V.R. Thermodynamic modeling for supercritical fluid process design // Ind. Eng. Chem. Res. 1993. № 32, R. 922 930.
- 19. Vargaftik N.B. Spravochnik po teplofizicheskim svojstvam gazov i zhidkostej. M.: Fizmatgiz, 1963, 567 S.
- 20. Dohrn R., Brunner G. An estimation method to calculate Tb, Tc, Pc and ω from the liquid molar volume and the vapor pressure // Proceedings of the 3rd International Symphosium on Supercritical Fluids, Strasburg (France). 1994. T. 1, P. 241 248.

Проблемы энергетики, 2017, том 19, № 5-6

- 21. Ameer Abed Jaddoa, A.A. Zaharov, T.R. Bilalov, R.R. Nakipov, I.R. Gabitov, Z.I. Zaripov, F.M. Gumerov. Nekotorye termodinamicheskie svojstva smesi «antracen—dioksid ugleroda» v sverhkriticheskoj fljuidnoj oblasti sostojanija //Sverhkriticheskie Fljuidy: Teorija i Praktika, 2015, T.10, №4, S. 18-35.
- 22. S. Lucas, M.P. Calvo, J. Garc´ıa-Serna, C. Palencia, M.J. Cocero Two-parameter model for mass transfer processes between solid matrixes and supercritical fluids: Analytical solution //J. of Supercritical Fluids, 2007, V. 41, №2, P. 257–266.

Authors of the publication

Bilalov Timur Renatovich – leading researcher, Federal state enterprise "State scientific-research Institute of chemical products", the associate Professor of "Theoretical bases of heat engineering" department, Federal state budgetary educational institution of higher professional education "Kazan national research technological University".

Farid Gumerov Mukhamedovich – head of "Theoretical bases of heat engineering" department, Federal state budgetary educational institution of higher professional education "Kazan national research technological University".

Поступила в редакцию

23 декабря 2016 г.