УДК 541.67+544.163.2

КОНСТАНТЫ КВАДРУПОЛЬНОГО ВЗАИМОДЕЙСТВИЯ И ЭЛЕКТРОННОЕ СТРОЕНИЕ СОЕДИНЕНИЙ $\mathfrak{I}\mathfrak{I}\mathfrak{I}\mathfrak{I}\mathfrak{I}\mathfrak{I}$

К.Ф. Халитов, В.Ф. Новиков

Казанский государственный энергетический университет, г. Казань, Россия karimkhalitov82@rambler.ru

Резюме: Для рядов молекул вида $3X_3$ (3 = N, As, Sb; X = F, Cl, Br, J) получены количественные соотношения между величинами констант квадрупольного взаимодействия e^2Qq и параметрами J и $\mu_{3^{3-}}$, характеризующими относительную величину пространственного перераспределения валентных электронов ионов \mathfrak{P}^{3-} при варьировании $\mathfrak{P}_{3^{3-}}$ для молекул в газовой и твердой фазах объясняются влиянием поля кристаллической решетки. Исследованы зависимости значений ЯКР частоты от дипольных моментов ионов $\mu_{3^{3-}}$.

Ключевые слова: Потенциалы ионизации, электронные пары, дипольные моменты, константы квадрупольных взаимодействий, электроны валентной оболочки иона \mathfrak{I}^{3-} , ЯКР частоты.

DOI: 10.30724/1998-9903-2018-20- 1-2 -122-127

QUADRUPOLE COUPLING CONSTANT AND ELECTRONIC STRUCTURE OF COMPOUNDS $\Im X_3$

K.F. Khalitov, V.F. Novikov

Kazan State Power Engineering University, Kazan, Russia

karimkhalitov82@rambler.ru

Abstract: For the series of molecules type $\Im X_3$ ($\Im = N$, As, Sb; X = F, Cl, Br, J) obtained quantitative relations between the values of the quadrupole coupling constants e^2Qq and parameters J and $\mu_{\Im^{3-}}$, characterizing the relative magnitude of the spatial redistribution of the

valence electrons of ions \mathfrak{I}^{3-} at varying \mathfrak{I} and X. The difference observed dependences e^2Qq off the dipole moments of the ions $\mu_{\mathfrak{I}^{3-}}$ to the molecules in the gas and solid phases explained due to the influence of the crystal lattice field. Explored the dependence values of the NQR frequencies v off the dipole moments of the ions \mathfrak{I}^{3-} .

Keywords: ionization potential, electron pair, dipole moment, quadrupole coupling constant, NQR frequencies

В работах [1–4] для соединений вида $3X_3$ (3 = N, P, As, Sb; X = FCl, Br, I) получены данные о закономерном влиянии замещения 3 и X на электронное строение молекул в основном и возбужденном состояниях. При этом для параметров молекул в основном состоянии наблюдаются зависимости между потенциалами ионизации (ПИ) неподеленных электронных пар (НЭП) ионов 3^{3-} , дипольными моментами (ДМ) и валентными углами α . Показано, что для молекул в возбужденных состояниях зависимости между величинами дипольных моментов, интенсивностями и частотами V в колебательных спектрах описываются экспоненциальными функциями [2–4]. Там же определены и рассчитаны значения параметров асимметрии распределения электронов J и дипольных моментов ионов ($\mu_{3^{3-}}$), описывающие относительную величину пространственного смещения и отклонения

от шаровой симметрии электронов валентной оболочки иона \mathfrak{I}^{3} различных молекул \mathfrak{I}_{3} [4]. Эти величины могут быть использованы для учета влияния неоднородного электрического поля, образуемого электронами валентной оболочки при отклонении от правильного тетраэдра, на ядре \mathfrak{I}_{3} . Взаимодействие ядерного электрического квадрупольного момента \mathfrak{I}_{4} с градиентом поля электронов \mathfrak{I}_{4} определяет энергию, равную величине константы квадрупольного взаимодействия \mathfrak{I}_{4} которая зависит как от влияния природы заместителей \mathfrak{I}_{4} в молекулах \mathfrak{I}_{4} так и от центрального атома \mathfrak{I}_{4} (табл.) [5–11].

В данной работе проведен поиск взаимосвязи между величинами $\mu_{3^{3-}}$, J с константами квадрупольного взаимодействия e^2Qq на примере соединений вида $\Im X_3$, содержащих элементы пятой группы Периодической системы. Величина e^2Qq экспериментально измеряется рядом физических методов в различных фазовых состояниях [5–9]. Например, метод микроволновой спектроскопии (MBC) исследует молекулы в газовом состоянии. В методе ядерного квадрупольного резонанса (ЯКР) исследуются кристаллические образцы, и поэтому величины градиента электрического поля eq и, соответственно, константы квадрупольного взаимодействия e^2Qq и величины частот ЯКР спектров V определяются не только пространственным распределением электронов вокруг ядра, но и влиянием поля кристаллической решетки [5–9].

Таблица Величины рассчитанных и экспериментальных параметров молекул ЭХ»

Соединения ЭХ ₃	J	(µ _{Э³-}), Д	$e^2 Q q$, М Γ ц крист.	e^2Qq , МГц газ	ЯКР ν, МГц
NF ₃	0,666	0,12	1	7,07(г)	_
NCl ₃	0,808	0,14	1	7,86*	_
PF ₃	0,374	1,231	-	_	_
PCl ₃	0,436	1,355	_	_	_
PBr ₃	0,461	0,989	_	_	_
PI_3	0,502	0,730	_	_	_
AsF ₃	0,302	3,23	ı	236,2(г)	_
AsCl ₃	0,361	2,433	_	173(Γ)	78,950
AsBr ₃	0,384	1,738	_	127,333*	63,569
AsJ_3	0,430	1,242	-	88,595*	29,338
SbF ₃	0,21	5,747	536,7	418,87*	80,66
SbCl ₃	0,256	4,497	383,96	327,29*	59,724
SbBr ₃	0,274	3,857	321,93	268,68*	50,273
SbJ ₃ SbJ ₃ ·3S ₈	0,304	3,105	84,7 251,8	225,09*	12,7 37,77

Примечание: *) значения рассчитанные по формуле (2); г) — экспериментальное значение в газовой фазе [6; 12]

В таблице приведены экспериментальные значения e^2Qq [6; 12] и рассчитанные в работах [2–4] величины J и $\mu_{3^{3^-}}$ для соединений $\Im X_3$, между которыми наблюдается зависимость

$$\mu_{3^{3}} = 27,7 \bullet \exp(7,17 \bullet J) \cdot 0,027,$$
(1)

Величины $\mu_{\mathfrak{I}^{3-}}$ и J ионов \mathfrak{I}^{3-} получены для газовой фазы [2–4]. Константы квадрупольных взаимодействий e^2Qq , рассчитанные из данных микроволновой спектроскопии, также получены для газовой фазы [6].

Согласно теории для соединений в газовой фазе [5–9] при электронном окружении, обладающем сферической симметрией, то есть при $\mu_{3^{3-}}=0$ и J=1, можно ожидать близкие к нулю значения e^2Qq . На рис. 1 показана зависимость e^2Qq (на ядрах N, As) от $\mu_{3^{3-}}$ для NF₃, AsCl₃, AsF₃, полученная методом MBC, – прямая 1, описываемая формулой

$$e^2 Qq = -2,399 + 73,264 \,\mu_{3^{3-}}$$
, (2)
 $r = 1,0; \, S_0 = \pm 3,349.$

Из уравнения (2) следует, что при $\mu_{9^{3-}}$ =0 e^2Qq = -2,399 МГц, то есть ожидаемое близкое к нулю значение. Для кристаллических образцов SbF₃, SbCl₃, SbBr₃, SbI₃·3S₈ между e^2Qq (на ядрах 121 Sb) и $\mu_{9^{3-}}$ наблюдается прямая (рис. 1, прямая 2), описываемая формулой

$$e^2 Qq = -76,500 + 105,573 \,\mu_{3^3},$$
 (3)
 $r = 0.996; S_0 = \pm 12,725.$

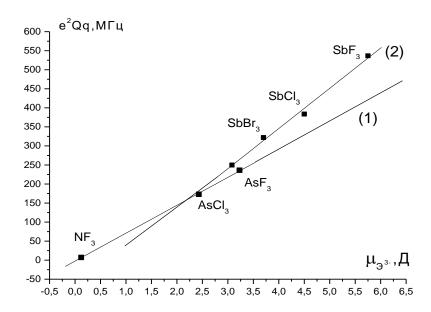


Рис. 1. Сравнение величин e^2Qq и $\mu_{\Im^{3^-}}$: прямая $1-e^2Qq$ газовая фаза; прямая $2-e^2Qq$ кристаллическая фаза

Известно, что при кристаллизации производная сурьмы SbI_3 переходит из тэтраэдрического строения в тригонально-бипирамидальную [6; 7; 13]. При этом симметрия расположения электронов валентной оболочки вокруг сурьмы увеличивается. Это резко

понижает величину градиента напряженности поля электронов. Переход из тэтраэдрического в тригонально-бипирамидальную структуру происходит за счет межмолекулярных взаимодействий молекул SbI $_3$ [7; 13]. В веществе SbI $_3$ ·3S $_8$ между SbI $_3$ и 3S $_8$ нет валентных связей. Поэтому молекулы 3S $_8$ блокируют межмолекулярные взаимодействия между молекулами SbI $_3$. Действительно величина $e^2Qq=251,8$ МГц для SbI $_3$ ·3S $_8$, а для чистого SbI $_3$ $e^2Qq=84,7$ МГц. Поэтому при корреляции использовалась величина $e^2Qq=251,8$ МГц для SbI $_3$ ·3S $_8$ [6; 12].

Отличие зависимостей значений e^2Qq в уравнениях (2) и (3) можно объяснить дополнительным влиянием поля кристаллической решетки для производных Sb. По уравнению (3) при $\mu_{\Im^{3-}}=0$ $e^2Qq=-76,500$ МГц и соответствует величине константы квадрупольного взаимодействия иона Sb³⁻. Отличие ее от нулевого значения определяется влиянием поля кристаллической решетки. Действительно, экспериментальное значение e^2Qq для кристаллического образца чистого Sb равна 76,85 МГц [6; 12; 14] и близка к полученной из уравнения (3).

По уравнению (2), используя известные $\mu_{9^{3-}}$ для соединений SbF₃, SbCl₃, SbBr₃, SbI₃, можно рассчитать величины e^2Qq для газовой фазы (табл.). Наибольшая разность между величинами (e^2Qq) в кристаллическом и газовом состояниях наблюдается для соединения SbF₃ с большей величиной $\mu_{9^{3-}}$.

Из сравнения уравнений (1) и (2) для величин e^2Qq и J можно ожидать экспоненциальную зависимость. Сопоставление экспериментальных значений, полученных для соединений NF₃, AsCl₃, AsF₃, SbF₃, SbCl₃, SbBr₃, SbI₃ ·3S₂, (табл., рис. 2) дает уравнение

$$e^2 Qq = 2932,946 \cdot \exp(-8,068 \cdot J)$$
 (4)

При $J = 1 e^2 Qq = 0,919 MГц.$

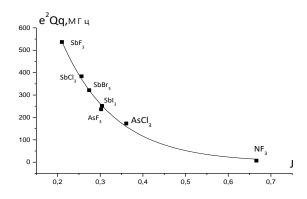


Рис. 2. Сравнение величин e^2Qq и J

Линейные зависимости наблюдаются и между дипольными моментами $\mu_{9^{3-}}$ и онов 9^{3-} и ЯКР частотами ν атомов 75 As и 121 Sb для рядов AsX $_3$ и SbX $_3$.

Для кристаллических образцов AsCl₃, AsBr₃, AsI₃:

$$\nu = -23,620+43,412 \mu_{_{9^3}}$$

$$r = 0.981$$
; $S_0 = \pm 6.882$.

при $\mu_{3^{3-}} = 0$; $\nu = -23,620$ МГц.

Для кристаллических SbF₃, SbCl₃, SbBr₃ $\nu = -12,452 + 16,170 \mu_{\odot}^{3}$

$$r = 0.999$$
; $S_0 = \pm 0.673$.

При $\mu_{3^{3-}} = 0$ $\nu = -12,452$ МГц — и близка к частоте чистой Sb: $\nu = 11,529$ МГц [6; 7; 12].

Таким образом, для рядов SbX $_3$ и AsX $_3$ при уменьшении дипольного момента $\mu_{9^{3^{-}}}$, соответственно при приближении расположения четырех электронных пар иона $9^{3^{-}}$ к шаровой симметрии, согласно ожидаемому, понижаются значения частот ν ЯКР спектров [6–9].

Наблюдаемые зависимости подтверждают ранее сделанные выводы о способности величины J и $\mu_{9^{3-}}$ количественно характеризовать симметрию расположения четырех электронных пар иона 9^{3-} и изменения их величин при варьировании природы X и, соответственно, способности взаимодействовать с соседними атомами в рядах $9X_3$.

Выявленные закономерности между электронными характеристиками e^2Qq от μ_3 -атомов и групп молекул рядов $ЭХ_3$ при варьировании Э и X могут быть использованы при интерпретации спектров ЯКР соединений, содержащих элементы пятой группы Периодической системы, широко применяемых в электронике, кристаллохимии, медицине, сельском хозяйстве [7].

Литература

- 1. Халитов Ф.Г., Халитов К.Ф. О закономерностях изменений валентных углов и потенциалов ионизации в рядах молекул вида $3X_3$ и $3X_2$ // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2014. № 95. С. 184—203. http://ej.kubagro.ru/2014/01/pdf/56.pdf.
- 2. Халитов Ф.Г., Халитов К.Ф. О поляризационных эффектах в рядах молекул вида $3X_3$ // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2014. № 99. С. 137–148. http://ej.kubagro.ru/2014/05/pdf/18.pdf .
- 3. Khalitov K.F., Novikov V.F., Khalitov F.G.,//Russian Journal of General Chemistry, 2016, Vol. 86, No. 10. P. 2288. DOI: 10.1134/S1070363216100078.
- 4. Халитов К.Ф. Метод оценки величин интенсивностей полос поглощения в ИК- спектрах молекул вида ЭХ₃ // Известия высших учебных заведений. Проблемы энергетики. 2016. № 9–10. С. 139–145.
- 5. Пентин Ю.А., Вилков Л.В. Физические методы исследования в химии. М.: Изд-во Мир, 2003. 684 с.
- 6. Семин Г.К., Бабушкина Г.Г., Якобсон Г.Г. Применение ядерного квадрупольного резонанса в химии. Л.: Химия, 1972. 536 с.
- 7. Кравченко Э.А., Кузнецов Н.Т., Новоторцев В.М. Ядерный квадрупольный резонанс в координационной химии. М.: КРАСАНД, 2014. 272 с.
 - 8. Драго Р. Физические методы в химии. М.: Изд-во Мир, 1981. Т. 1. 424 с.; Т. 2. 456 с.
 - 9. Бенуэлл К. Основы молекулярной спектроскопию. М.: Изд-во Мир, 1985. 384 с.
- 10. Мустаев С.А., Счастьев П.В. Влияние геометрических и электронных факторов на квадрупольные константы χ^N .// Журнал структурной химии. 1987. Т. 28, № 5. С. 36–40.
- 11. Полещук О.Х. Исследование электронной структуры галогенидов V_A группы // Журн. неорг. химии. 1985. Т. 30, № 12. С. 3016—3018.
- 12. Chihara H., Nakamura N. Nuclear Quadrupole Resonance Spectroscopy Data // Londolt-Bornstein. Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics. 1989. V. 20. Subvolume C. Berlin e.a.: Springer.
 - 13. Гурьянова Е.Н., Гольдштейн И.П., Ромм И.П. Донорно-акцепторная связь. М.: Химия, 1973. 394 с.
- 14. Hewitt R.R., MacLaughlin D. E. Nuclear Spin Relaxation in the Quadrupole Spectrum of Antimony Metal // Journal of Magnetic Resonance. 1978. V. 30. P. 483–489.

Авторы публикации

Халитов Карим Фаритович – старший преподаватель Казанского государственного энергетического университета (КГЭУ).

Новиков Вячеслав Федорович – д-р хим. наук, профессор Казанского государственного энергетического университета (КГУЭ).

References

- 1. Khalitov F.G., Khalitov K.F. O zakonomernostyakh izmenenii valentnykh uglov i potentsialov ionizatsii v ryadakh molekul vida EKh3 i EKh2. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2014. No. 95. P. 184–203. http://ej.kubagro.ru/2014/01/pdf/56.pdf.
- 2. Khalitov F.G., Khalitov K.F. O polyarizatsionnykh effektakh v ryadakh molekul vida EKh3. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2014. No. 99. P. 137–148. http://ej.kubagro.ru/2014/05/pdf/18.pdf.
- 3. Khalitov K.F., Novikov V.F., Khalitov F.G.,//Russian Journal of General Chemistry, 2016, V. 86, No. 10, p. 2288. DOI: 10.1134/S1070363216100078
- 4. Khalitov K.F. Metod otsenki velichin intensivnostei polos pogloshcheniya v IK- spektrakh molekul vida EKh3. Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki. 2017. No. 9–10. P. 138–144.
 - 5. Pentin Yu.A., Vilkov L.V. Fizicheskie metody issledovaniya v khimii. M.: Izd-vo Mir, 2003. 684 p.
- 6. Semin G.K., Babushkina G.G., Yakobson G.G. Primenenie yadernogo kvadrupol'nogo rezonansa v khimii. L.: Khimiya, 1972. 536 p.
- 7. Kravchenko E.A., Kuznetsov N.T., Novotortsev V.M. Yadernyi kvadrupol'nyi rezonans v koordinatsionnoi khimii. M.: KRASAND. 2014. 272 p.
 - 8. Drago R. Fizicheskie metody v khimii. M.: Izd-vo Mir. 1981. Vol 1, 424 p.; Vol 2. 456 p.
 - 9. Benuell K. Osnovy molekulyarnoi spektroskopiyu. M.: Izd-vo Mir. 1985. 384 p.
- 10. Mustaev S.A., Schast'ev P.V. Vliyanie geometricheskikh i elektronnykh faktorov na kvadrupol'nye konstanty χN .// Zhurnal strukturnoi khimii. 1987. Vol 28, No. 5. P. 36–40.
- 11. Poleshchuk O.Kh. Issledovanie elektronnoi struktury galogenidov VA gruppy // Zhurn. neorg. khimii. 1985. V. 30. No. 12. P. 3016–3018.
- 12. Chihara H., Nakamura N. Nuclear Quadrupole Resonance Spectroscopy Data // Londolt-Bornstein. Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics. 1989. V. 20. Subvolume C. Berlin e.a.: Springer.
 - 13. Gur'yanova E.N., Gol'dshtein I.P., Romm I.P. Donorno-aktseptornaya svyaz'. M.: Khimiya,1973. 394 p.
- 14. Hewitt R.R., MacLaughlin D. E. Nuclear Spin Relaxation in the Quadrupole Spectrum of Antimony Metal // Journal of Magnetis Resonance. 1978. V. 30. P. 483–489.

Authors of the publication

Karim F. Khalitov – senior lecturer, Kazan State Power Engineering University.

Vyacheslav F. Novikov - professor, Kazan State Power Engineering University.

Поступила в редакцию

15 ноября 2017 г.