УДК 620.9; 621.1

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПАРОГАЗОВОЙ УСТАНОВКИ С КОТЛОМ-УТИЛИЗАТОРОМ ЗА СЧЕТ ВКЛЮЧЕНИЯ В СХЕМУ АБСОРБЦИОННОГО ПРЕОБРАЗОВАТЕЛЯ ТЕПЛОТЫ

Р.Н. Валиев, Ш.Г. Зиганшин, Ю.В. Ваньков, Р.Р. Гарипов

Казанский государственный энергетический университет, г. Казань, Россия valievkgeu@yandex.ru

Резюме: В данной статье рассмотрен вопрос повышения эффективности парогазовой установки с одноконтурным котлом-утилизатором за счет включения в схему абсорбционного бромисто-литиевого преобразователя теплоты.

Ключевые слова: парогазовая установка, одноконтурный котел-утилизатор, абсорбционный бромисто-литиевый преобразователь теплоты, повышение эффективности.

IMPROVING THE EFFICIENCY OF THE COMBINED CYCLE PLANT WITH HEAT-RECOVERY BOILER DUE TO THE INCLUSION IN THE SCHEME OF ABSORPTION CONVERTER OF HEAT

R.N. Valiev, S.G. Ziganshin, U.V. Vankov, R.R. Garipov

Kazan State Power Engineering University, Kazan, Russia valievkgeu@yandex.ru

Abstract: In this article the question of increase of efficiency of the combined cycle plant with single-loop heat-recovery boiler due to the inclusion in the scheme of absorption bromide lithium converter of heat.

Keywords: combined cycle plant, single-loop waste heat boiler, absorption bromide lithium converter of heat, improving the efficiency.

Целью исследования является разработка схемного решения, в котором совместно с парогазовой установкой с одноконтурным котлом утилизатором (далее по тексту ПГУ) будет задействован абсорбционный бромисто-литиевый преобразователь теплоты (далее по тексту АБПТ).

Описание базового варианта одноконтурной ПГУ [1-3]

Схема базового варианта одноконтурной ПГУ показана на рис. 1. Основными элементами ПГУ являются: газотурбинная установка 1, котел-утилизатор 2 и паровая турбина 3. Котел-утилизатор имеет пять теплообменных поверхностей: пароперегреватель ПП, испаритель И1, экономайзер Э, газовый подогреватель конденсата ГПК и газовый подогреватель сетевой воды ГПСВ. Для имитации потребителя теплоты после ГПСВ в схему включен водо-водяной теплообменник ВВТО. На схеме также выделены и пронумерованы: деаэратор 4, конденсатор паровой турбины 5, барабан котла-утилизатора 6, градирня оборотного водоснабжения 7.

Рис.1. Схема базового варианта ПГУ с одноконтурным котлом-утилизатором: *I* – газотурбинная установка; *2* – котел-утилизатор (КУ); *3* – паровая турбина; *4* – деаэратор; *5* – конденсатор паровой турбины; *6* – барабан; *7* – градирня оборотного водоснабжения. Буквенные обозначения: КС – камера сгорания; ВК – воздушный компрессор; ГТ – газовая турбина; ЭГ1 – электрогенератор газовой турбины; ЭГ2 – электрогенератор паровой турбины; И1 – испаритель; Э – экономайзер; ГПК – газовый подогреватель конденсата; ГПСВ – газовый подогреватель сетевой воды; ВВТО – водо-водяной теплообменник. Расшифровка принятых обозначений температур потоков на схеме приведена в табл. 2

В камере сгорания газотурбинной установки сжигается топливо, смешанное с воздухом после воздушного компрессора, и образуются дымовые газы, которые направляются в газовую турбину для совершения полезной работы, в результате которой вырабатывается электрическая энергия. Отработанные в газовой турбине лымовые газы. пройдя через теплообменные поверхности котла-утилизатора и дымовую трубу, рассеиваются в атмосфере. В теплообменных поверхностях котла-утилизатора за счет теплообмена с дымовыми газами вырабатывается перегретый водяной пар и нагревается вода. Выработанный пар поступает в паровую турбину для совершения полезной работы, в результате которой вырабатывается электрическая энергия. Отработанный пар из паровой турбины отводится в конденсатор паровой турбины, в котором поддерживается необходимое разряжение и происходит теплообмен с оборотной водой, для конденсации. Образовавшийся конденсат перекачивается через газовый подогреватель конденсата, где подогревается до заданной температуры, в деаэратор. В деаэратор также поступают: греющий пар из промежуточного отбора паровой турбины и химочищенная вода из цеха химводоподготовки. Из деаэратора питательная вода подается в экономайзер. Цикл замыкается. Теплофикационная вода нагревается в газовом подогревателе сетевой воды.

Описание АБПТ [4-7]

Схема АБПТ показана на рис. 2. Абсорбционный бромисто-литиевый преобразователь теплоты состоит из пяти основных элементов: генератора Г, конденсатора К, испарителя И2, абсорбера А и теплообменника растворов ТО.

Рис 2. Схема АБПТ:

Γ – генератор; К – конденсатор; И2 – испаритель; А – абсорбер; ТО – теплообменник. Расшифровки обозначений температур потоков приведены в табл. 1

В генератор подводится высоко- или среднепотенциальная теплота от греющего источника в виде продуктов сгорания, водяного пара или горячей воды, в результате чего слабый раствор (раствор с низкой концентрацией бромистого лития) кипит с образованием водяного пара и крепкого раствора (раствора с высокой концентрацией бромистого лития).

Полученный водяной пар направляется в конденсатор, а оставшийся после выпаривания крепкий раствор через теплообменник растворов подается в абсорбер. В конденсаторе водяной пар конденсируется за счет передачи теплоты нагреваемому технологическому потоку, а образовавшийся паровой конденсат через гидрозатвор отводится в испаритель. В испарителе создается и поддерживается необходимое разряжение, при котором паровой конденсат кипит за счет организации теплообмена с потоком низкопотенциальной теплоты в виде нагретой оборотной воды. Выработанный в испарителе водяной пар переходит в абсорбер.

В абсорбере водяной пар орошается крепким раствором и конденсируется с образованием слабого раствора. Теплота, выделившаяся в процессе абсорбции, передается нагреваемому технологическому потоку. Слабый раствор из абсорбера через теплообменник растворов перекачивается в генератор и цикл замыкается.

Коэффициент преобразования теплоты, который может быть получен в АБПТ, зависит от потенциала используемых источников теплоты, параметров термодинамического цикла, свойств раствора и характеристик оборудования [8–11].

Описание нового варианта одноконтурной ПГУ

Схема нового варианта одноконтурной ПГУ показана на рис. 3.

Принципиальные отличия предлагаемой схемы ПГУ от базовой заключаются:

- в добавлении в схему АБПТ;

- в установке дополнительной поверхности нагрева в котле-утилизаторе;

- в использовании низкопотенциальной теплоты оборотной воды.

В базовой схеме без АБПТ конденсат из конденсатора паровой турбины перед подачей в деаэратор нагревается в газовом подогревателе конденсата ГПК (рис. 1).

Проблемы энергетики, 2017, том 19, № 11–12

В новой схеме нагреваемый конденсат последовательно проходит через три теплообменные поверхности: абсорбер АБПТ, конденсатор АБПТ и газовый подогреватель конденсата ГПК.

Для обогрева генератора АБПТ в качестве теплоносителя используется вода, нагреваемая в дополнительной поверхности нагрева котла-утилизатора, газовом подогревателе воды ГПВ.

Для обогрева испарителя АБПТ в качестве теплоносителя используется низкопотенциальная теплота оборотной воды после конденсатора паровой турбины.

В остальном новая схема по описанию идентична базовой схеме, показанной на рис. 1.

Рис. 3. Схема нового варианта ПГУ с одноконтурным котлом-утилизатором и АБПТ: *I* – газотурбинная установка; *2* – котел-утилизатор (КУ); *3* – паровая турбина; *4* – деаэратор; *5* – конденсатор паровой турбины; *6* – барабан КУ; *7* – градирня оборотного водоснабжения; *8* –АБПТ. Буквенные обозначения: КС – камера сгорания; ВК – воздушный компрессор; ГТ – газовая турбина; ЭГ1 – электрогенератор газовой турбины; ЭГ2 – электрогенератор паровой турбины; И1 – испаритель КУ; Э – экономайзер КУ; ГПК – газовый подогреватель конденсата КУ; ГПВ – газовый подогреватель воды КУ; ГПСВ – газовый подогреватель сетевой воды КУ; ВВТО – водо-водяной теплообменник; Г – генератор АБПТ; И2 – испаритель АБПТ; К – конденсатор АБПТ; А – абсорбер АБПТ. Расшифровка принятых обозначений температур потоков на схеме приведена в табл. 1, 3

Преимуществом нового схемного решения является увеличение тепловой мощности ГПСВ. Недостатком – усложнение схемы и дополнительные затраты на приобретение и внедрение нового оборудования.

Методика сравнительной оценки эффективности

Для сравнительной оценки эффективности базовой и новой схем ПГУ с одноконтурным котлом-утилизатором были определены исходные данные и произведены необходимые расчеты в следующей последовательности: 1) расчет базовой схемы ПГУ; 2)

расчет АБПТ; 3) расчет новой схемы ПГУ; 3) сравнительная оценка теплоэнергетической эффективности включения АБПТ в схему ПГУ на основе анализа полученных результатов.

Расчет схем ПГУ проводился в компьютерной программе, предназначенной для расчета тепловых схем парогазовых установок с котлами-утилизаторами. В основу рабочего алгоритма программы заложены общепринятые классические методики расчета тепловых схем ПГУ [1]. Для ввода исходных данных и вывода результатов в программе использованы возможности пакета Microsoft Excel со встроенным языком программирования VBA.

Для сопоставимости результатов расчета базового и нового вариантов схемы ПГУ генерируемая установками электрическая мощность, параметры И количество вырабатываемого перегретого водяного пара, а также температура покидающих котелутилизатор дымовых газов приняты одинаковыми и определялись для четырех рабочих режимов с наиболее характерными температурами наружного воздуха.

Расчет АБПТ проводился отдельно от расчета тепловых схем ПГУ по общепринятым классическим методикам, приведенным в литературе [5, 6]. Тепловые нагрузки аппаратов АБПТ определялись по расходу конденсата из паровой турбины.

Полученные результаты

Показатели, представляющие интерес для сравнительной оценки эффективности базовой и новой схем ПГУ, приведены для АБПТ в табл. 1, для базового варианта схемы ПГУ – в табл. 2, для нового варианта схемы ПГУ – в табл. 3.

Таблина 1

Показатели АБПТ								
№	II	Обозна-	Температура наружного воздуха, °С					
п/п	Наименование величины и размерность	чение	-32	-18	-5,2	8		
1	Тепловая нагрузка генератора, кВт	Q_{Γ}	1550	1550 1550		1495		
2	Тепловая нагрузка испарителя, кВт	Q_0	1088 1087		1071,47	1047,2		
3	Тепловая нагрузка конденсатора, кВт	$Q_{\rm K}$	1153 1152		1134,9	1109,27		
4	Тепловая нагрузка абсорбера, кВт	$Q_{\rm A}$	1490,29	1489,29	1466,2	1433,08		
5	Тепловая нагрузка промежуточного теплообменника, кВт	$Q_{ m TO}$	347,93	345,26	342,3	334,58		
6	Температура греющей воды на входе в генератор, °С	$t_{\Gamma\Pi B2}$	160	160 160		160		
7	Температура греющей воды на выходе из генератора, °С	$t_{\Gamma\Pi B1}$	130	130	130	130		
8	Температура оборотной воды на входе в испаритель, °С	t _{O2}	35	35	35	35		
9	Температура оборотной воды на выходе из испарителя, °С	t _{O1}	20	20	20	20		
10	Температура конденсата паровой турбины на входе в абсорбер, °C	t_5	39	39	39	39		
12	Температура конденсата паровой турбины на выходе из конденсатора, °С	$t_{\rm K} = t_{\Gamma\Pi K1}$	75	75	75	75		
13	Расход греющей воды через генератор, кг/с	G_{Γ}	12,01	12	11,89	11,56		
14	Расход конденсата паровой турбины через абсорбер и конденсатор, кг/с	$G_{\rm A} = G_{\rm K}$	17,49	17,47	17,21	16,82		
15	Расход оборотной воды через испаритель, кг/с	G_{M}	17,27	17,26	17	16,62		

ALTT

Таблица 2

Показатели базовой схемы ПГУ								
N₂	Наименование величины и размерность	Обозна-	Температура наружного воздуха. °С					
п/п		чение	-32,0	-18,0	-5,2	8,0		
1	Температура дымовых газов за газовой турбиной, °С	$t_{\Gamma T}$	518,7	526,4	532,7	538,8		
2	Температура дымовых газов за пароперегревателем, °С	$t_{\Pi\Pi}$	454,0	458,4	462,0	465,4		
3	Температура дымовых газов за испарителем, °С	t _H	255,4	255,4	255,4	255,4		
4	Температура дымовых газов за экономайзером, °С	t _{ЭK}	215,7	214,8	214,0	213,3		
5	Температура дымовых газов за ГПК, °С	$t_{\Gamma\Pi K}$	166,4	164,4	162,7	161,1		
6	Температура дымовых газов за ГПСВ, °С	t _{ГПСВ}	110,0	110,0	110,0	110,0		
7	Давление пара на выходе из пароперегревателя, МПа		3,5	3,5	3,5	3,5		
8	Температура пара на выходе из пароперегревателя, °С	$t_{\Pi\Pi 2}$	478,7	486,4	492,7	498,8		
9	Температура пара на входе в пароперегреватель, °С	$t_{\Pi\Pi 1}$	478,7	486,4	492,7	498,8		
10	Температура пара на выходе из испарителя, °С	$t_{\Pi\Pi 2}$	245,4	245,4	245,4	245,4		
11	Температура воды на входе в испаритель, °С	$t_{\Pi\Pi 1}$	245,4	245,4	245,4	245,4		
12	Температура воды на выходе из экономайзера, °С	t _{IIII2}	235,4	235,4	235,4	235,4		
13	Температура воды на входе в экономайзер, °С	$t_{\Pi\Pi 1}$	159,4	159,4	159,4	159,4		
14	Температура воды на выходе из ГПК, °С	$T_{\Gamma\Pi K2}$	143,8	143,8	143,8	143,8		
15	Температура воды на входе в ГПК, °С	$t_{\Gamma K\Pi 1}$	60,0	60,0	60,0	60,0		
16	Температура воды на выходе из ГПСВ, °С	t _{ГПСВ2}	140,0	140,0	140,0	140,0		
17	Температура воды на входе в ГПСВ, °С	$t_{\Gamma\Pi CB1}$	80,0	65,0	60,0	60,0		
18	Температура прямой воды тепловой сети, °С	τ_{01}	130,0	98,0	70,0	70,0		
19	Температура обратной воды в тепловой сети, °С	τ_{02}	70,0	55,0	42,0	42,0		
18	Тепловая мощность ГПСВ, МВт	$Q_{\Gamma\Pi CB}$	8,77	8,25	7,73	7,21		
19	Расход дымовых газов за ГТ, кг/с	$G_{{ m A}{ m \Gamma}}$	146,0	142,6	138,0	132,7		
20	Расход пара через пароперегреватель, кг/с	$G_{\Pi\Pi}$	18,10	18,07	17,80	17,40		
21	Расход воды на испаритель, кг/с	Gи	18,10	18,07	17,80	17,40		
22	Расход воды через экономайзер, кг/с	$G_{\mathfrak{Z}}$	18,47	18,44	18,16	17,75		
23	Расход воды через ГПК, кг/с	$G_{\Gamma\Pi \mathrm{K}}$	21,83	21,80	21,47	20,99		
24	Расход воды через ГПСВ, кг/с	$G_{\Gamma\Pi CB}$	34,59	26,08	22,94	21,38		

Таблица 3

Ma		Обо-	Температура наружного воздуха, °С				
JN <u>⊆</u>	Наименование величины и размерность	значе-	22.0	18.0	5.2	8.0	
11/11		ние	-32,0	-16,0	-3,2	8,0	
1	Температура дымовых газов за газовой турбиной, °С	$t_{\Gamma T}$	518,7	526,4	532,7	538,8	
2	Температура дымовых газов за	+	454.0	158 1	462.0	165.4	
	пароперегревателем, °С	ι _{ΠΠ}	434,0	438,4	402,0	403,4	
3	Температура дымовых газов за испарителем, °С	t _И	255,4	255,4	255,4	255,4	
4	Температура дымовых газов за экономайзером, °С	t _{ЭK}	215,7	214,8	214,0	213,3	
5	Температура дымовых газов за ГПК, °С	$t_{\Gamma\Pi K}$	183,3	181,6	180,3	179,0	
6	Температура дымовых газов за ГПВ, °С	$t_{\Gamma\Pi B}$	173,4	171,5	169,9	168,5	
7	Температура дымовых газов за ГПСВ, °С	$t_{\Gamma\Pi CB}$	110,0	110,0	110,0	110,0	
8	Давление пара на выходе из пароперегревателя, МПа	$P_{\Pi\Pi}$	3,5	3,5	3,5	3,5	
9	Температура пара на выходе из пароперегревателя, °С	$t_{\Pi\Pi 2}$	478,7	486,4	492,7	498,8	
10	Температура пара на входе в пароперегреватель, °С	$t_{\Pi\Pi1}$	478,7	486,4	492,7	498,8	
11	Температура пара на выходе из испарителя, °С	$t_{\Pi\Pi 2}$	245,4	245,4	245,4	245,4	
12	Температура воды на входе в испаритель, °С	$t_{\Pi\Pi1}$	245,4	245,4	245,4	245,4	
13	Температура воды на выходе из экономайзера, °С	$t_{\Pi\Pi 2}$	235,4	235,4	235,4	235,4	
14	Температура воды на входе в экономайзер, °С	$t_{\Pi\Pi1}$	159,4	159,4	159,4	159,4	
15	Температура воды на выходе из ГПК, °С	$T_{\Gamma\Pi K2}$	143,8	143,8	143,8	143,8	
16	Температура воды на входе в ГПК, °С	$t_{\Gamma K\Pi 1}$	75	75	75	75	
17	Температура воды на выходе из ГПВ, °С	$T_{\Gamma\Pi B2}$	160	160	160	160	
18	Температура воды на входе в ГПВ, °С	$t_{\Gamma\Pi B1}$	130	130	130	130	
19	Температура воды на выходе из ГПСВ, °С	t _{ГПСВ2}	140,0	140,0	140,0	140,0	
18	Температура воды на входе в ГПСВ, °С	$t_{\Gamma\Pi CB1}$	80,0	65,0	60,0	60,0	
19	Температура прямой воды тепловой сети, °С	τ_{01}	130,0	98,0	70,0	70,0	
20	Температура обратной воды в тепловой сети, °С	τ_{02}	70,0	55,0	42,0	42,0	
21	Тепловая мощность ГПСВ, МВт	$Q_{\Gamma\Pi CB}$	9,85	9,33	8,79	8,20	
22	Расход дымовых газов за ГТ, кг/с	$G_{{ m A}{ m \Gamma}}$	146,0	142,6	138,0	132,7	
23	Расход пара через пароперегреватель, кг/с	$G_{\Pi\Pi}$	18,10	18,07	17,80	17,40	
24	Расход воды на испаритель, кг/с	G_{M}	18,10	18,07	17,80	17,40	
25	Расход воды через экономайзер, кг/с	$G_{\mathfrak{Z}}$	18,47	18,44	18,16	17,75	
26	Расход воды через ГПК, кг/с	$G_{\Gamma\Pi \mathrm{K}}$	17,49	17,47	17,21	16,82	
27	Расход воды через ГПВ, кг/с	$G_{\Gamma\Pi B}$	12,01	12	11,89	11,56	
28	Расход воды через ГПСВ, кг/с	$G_{\Gamma\Pi CB}$	38,87	29,51	26,08	24,48	

Показатели новой схемы ПГУ

Гистограмма изменения температуры дымовых газов в теплообменных поверхностях котла-утилизатора для базового и нового вариантов схемы показана на рис. 5.

Гистограмма построена для климатических условий г. Казань при средней температуре наружного воздуха для отопительного периода -5,2°С.

Из гистограммы и табл. 1 и 2 видно, что в новой схеме, благодаря предварительному нагреву конденсата после паровой турбины в абсорбере АБПТ и конденсаторе АБПТ, при прочих равных условиях температура дымовых газов на входе в газовый подогреватель сетевой воды выше на 7°С.

Рис. 5. Изменение температуры дымовых газов в теплообменных поверхностях котла-утилизатора для базового и нового вариантов схемы ПГУ: ПП – пароперегреватель; И – испаритель; Э – экономайзер; ГПК – газовый подогреватель конденсата (в базовой схеме теплосъем больше на 49,3-32,4=16,9°С); ГПВ – газовый подогреватель воды для генератора АБПТ (в базовой схеме ГПВ остутствует, в новой схеме теплосъем в ГПВ составляет 9,9°С); ГПСВ – газовый подогреватель сетевой воды (в новой схеме теплосъем и в баз,4-56,4=7°С)

На рис. 6 показан график тепловой мощности газового подогревателя сетевой воды в зависимости от температуры наружного воздуха для базового и нового вариантов схемы.

Рис.6. Тепловая мощность газового подогревателя сетевой воды в зависимости от температуры наружного воздуха для базового и нового вариантов схемы ПГУ

Из графика следует, что в новом варианте схемы ПГУ тепловая мощность газового подогревателя сетевой воды в рассмотренном интервале наружных температур может быть, при прочих равных условиях, увеличена, по сравнению с базовым вариантом, на 0,99 МВт

при температуре наружного воздуха $+8^{\circ}$ C, на 1,06 MBт при температуре наружного воздуха $-5,2^{\circ}$ C; на 1,08 MBт при температурах наружного воздуха $-18 \text{ u} - 32^{\circ}$ C.

Выводы

1. Предложено и рассмотрено новое схемное решение для ПГУ с одноконтурным котлом-утилизатором и АБПТ.

2. Проведено расчетное исследование и получены результаты, подтверждающие теплоэнергетическую эффективность новой схемы ПГУ по сравнению с базовым вариантом. В заданном интервале температур наружного воздуха тепловая мощность газового подогревателя сетевой воды за счет установки АБПТ увеличена на 12–14 % от своего прежнего значения.

3. Увеличение тепловой мощности ГПСВ при прочих равных условиях позволяет получить дополнительный доход от реализации тепловой энергии, который можно приближенно оценить по формуле, руб/год,

$$\Delta \mathcal{A}_{T\mathcal{P}} = 1,163 \Delta \mathcal{Q}_{T\mathcal{P}} \tau_{T\mathcal{P}} \mathcal{U}_{T\mathcal{P}} \eta_{T\mathcal{P}}, \tag{1}$$

где $\Delta A_{T\Im}$ – доход от реализации дополнительной тепловой мощности, руб/год; 1,163 – коэффициент для перевода МВт в Гкал/ч; $\Delta Q_{T\Im}$ – дополнительно реализуемая тепловая мощность, МВт; $\tau_{T\Im}$ – число часов в году, в течение которых реализуется дополнительная тепловая мощность, ч/год; $U_{T\Im}$ – отпускная цена 1 Гкал тепловой энергии, руб/Гкал; $\eta_{T\Im}$ – коэффициент полезного действия тарифа, учитывающий все дополнительные неучтенные в тарифе расходы и потери в процессе производства, транспортировки, распределения и реализации дополнительной тепловой мощности, о.е.

Например, при увеличении отпуска теплоты потребителям на $\Delta Q_{T\Im} = 1$ МВт, при условии реализации тепловой энергии в течение $\tau_{T\Im} = 8400$ часов/год и принятой стоимости тепловой энергии Ц_{ТЭ} = 1626 руб/Гкал, с заданным коэффициентом полезного действия тарифа $\eta_{T\Im} = 0.5$, дополнительный годовой доход составит

 $\Delta I_{T \rightarrow} = 1,163 \Delta Q_{T \rightarrow} \tau_{T \rightarrow} I_{T \rightarrow} \eta_{T \rightarrow} = 1,163 \cdot 1 \cdot 8400 \cdot 1626 \cdot 0,5 = 7.942.360 \text{ py6/rog.}$

Литература

1. Трухницкий А.Д. Парогазовые установки электростанций: учебное пособие для вузов по направлению подготовки «Энергетическое машиностроение» и «Теплоэнергетика и теплотехника». Москва: Издательский дом МЭИ, 2013. 646 с.

2. Щинников П.А. Назаренко Г.В., Григорьева О.К. и др. Комплексный анализ парогазовых ТЭЦ // Известия высших учебных заведений. Проблемы энергетики. 2010. № 3-4. С. 15–20.

3. Heejin Cho, Amanda D. Smith, Pedro Mago, Combined cooling, heating and power: A review of performance improvement and optimization, Applied Energy. 2014. Volume 136. P. 168–185.

4. Ноздренко Г.В., Щинников П.А., Томилов В.Г. Пугач Ю.Л. Двухтрубная система теплоснабжения с абсорбционным бромисто-литиевым тепловым насосом // Известия высших учебных заведений. Проблемы энергетики. 2000. № 5-6. С. 25–28.

5. Бараненко А.В., Тимофеевский Л.С., Долотов А.Г., Попов А.В. Абсорбционные преобразователи теплоты: моногр. СПб.: СПбГУНиПТ, 2006. 338 с.

6. Тимофеевский Л.С., Пекарев В.И., Бухарин Н.Н. и др. Тепловые и конструктивные расчеты холодильных машин, тепловых насосов и термотрансформаторов. Ч.1. Расчет циклов, термодинамических и теплофизических свойств рабочих веществ. СПбГУНиПТ, 2006. 260 с.

7. Галимова Л.В. Эффективность энергосберегающих систем на базе абсорбционных термотрансформаторов: автореф. дис.... д-ра техн. наук. Астрахань: Астрахан. ГТУ, 2004. 32 с.

8. Christian Keil, Stefan Plura, Michael Radspieler, Christian Schweigler, Application of customized absorption heat pumps for utilization of low-grade heat sources, Applied Thermal Engineering, Volume 28, Issue 16, 2008, p. 2070–2076.

9. Романюк В.Н., Бобич А.А. Абсорбционные тепловые насосы на ТЭЦ Белорусской ОЭС на примере Мозырской ТЭЦ // Энергия и Менеджмент. 2015. № 1. С. 13–20.

Проблемы энергетики, 2017, том 19, № 11-12

10. Романюк В.Н, Бобич А.А. Обоснование параметров АБТН для утилизации ВЭР на ТЭЦ с помощью пассивного эксперимента и определение соответствующих изменений различных оценок работы энергосистемы // Энергия и Менеджмент. 2016. № 1. С. 14–23.

11. Романюк В.Н, Бобич А.А. Численное исследование тепловых схем ТЭЦ с помощью их топологических моделей // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2016. Т. 59, № 4. С. 376–390.

Авторы публикации

Валиев Радик Нурттинович – канд. техн. наук, доцент кафедры «Промышленная теплоэнергетика и системы теплоснабжения» (ПТЭ) Казанского государственного энергетического университета (КГЭУ). E-mail: valievkgeu@yandex.ru.

Зиганшин Шамиль Гаязович – канд. техн. наук, доцент кафедры «Промышленная теплоэнергетика и системы теплоснабжения» (ПТЭ) Казанского государственного энергетического университета (КГЭУ). E-mail: shz@list.ru.

Ваньков Юрий Витальевич – д-р техн. наук, профессор, заведующий кафедрой «Промышленная теплоэнергетика и системы теплоснабжения» (ПТЭ) Казанского государственного энергетического университета (КГЭУ). E-mail: yvankov@mail.ru.

Гарипов Ранис Рафисович – магистр техники и технологий кафедры «Промышленная теплоэнергетика и системы теплоснабжения» (ПТЭ) Казанского государственного энергетического университета (КГЭУ).

References

1. Parogazovye ustanovki elektrostantsiy: uchebnoe posobie dlya vuzov po napravleniyu podgotovki "Energeticheskoe mashinostroenie" i "Teploenergetika i teplotekhnika" / A. D. Trukhniy. Moskva: Izdatelskiy dom MEI, 2013, 646 p.

2. Kompleksnyy analiz parogazovykh TETs [Tekst] / P. A. Shchinnikov [i dr.] // Izvestiya vysshikh uchebnykh zavedeniy. 2010. № 3-4. P. 15-20.

3. Heejin Cho, Amanda D. Smith, Pedro Mago, Combined cooling, heating and power: A review of performance improvement and optimization, Applied Energy, Volume 136, 2014, p. 168-185.

4. Dvukhtrubnaya sistema teplosnabzheniya s absorbtsionnym bromisto-litievym teplovym nasosom / G. V. Nozdrenko [i dr.]. // Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki. 2000. № 5-6. P. 25-28.

5. Absorbtsionnye preobrazovateli teploty / Baranenko A. V., Timofeevskiy L. S., Dolotov A. G., Popov A. V.: monogr. SPb.: SPbGUNiPT, 2006, 338 p.

6. Teplovye i konstruktivnye raschety kholodilnykh mashin, teplovykh nasosov i termotransformatorov. Ch.1. Raschet tsiklov, termodinamicheskikh i teplofizicheskikh svoystv rabochikh veshchestv / Timofeevskiy L. S., Pekarev V. I., Bukharin N. N. i dr. SPb.: SPbGUNiPT, 2006, 260 p.

7. Effektivnost energosberegayushchikh sistem na baze absorbtsionnykh termotransformatorov / Galimova L.V.: avtoref. dis. d-ra tekhn. nauk. Astrakhan: Astrakhan. GTU, 2004, 32 p.

8. Christian Keil, Stefan Plura, Michael Radspieler, Christian Schweigler, Application of customized absorption heat pumps for utilization of low-grade heat sources, Applied Thermal Engineering, Volume 28, Issue 16, 2008, p. 2070–2076.

9. Absorbtsionnye teplovye nasosy na TETs Belorusskoy OES na primere Mozyrskoy TETs / V.N. Romanyuk, A.A. Bobich // Energiya i Menedzhment. 2015. No. 1. P. 13–20.

© Р.Н. Валиев, Ш.Г. Зиганшин, Ю.В. Ваньков, Р.Р. Гарипов

10. Obosnovanie parametrov ABTN dlya utilizatsii VER na TETs s pomoshchyu passivnogo eksperimenta i opredelenie sootvetstvuyushchikh izmeneniy razlichnykh otsenok raboty energosistemy / V.N. Romanyuk, A.A. Bobich // Energiya i Menedzhment. 2016. No. 1. P. 14–23.

11. Chislennoe issledovanie teplovykh skhem TETs s pomoshchyu ikh topologicheskikh modeley / V. N. Romanyuk, A. A. Bobich // Energetika. Izv. vyssh. ucheb. zavedeniy i energ. obedineniy SNG. 2016. Vol. 59, No. 4. P. 376–390.

Authors of the publication

Radik N. Valiev – Cand. Sci. (Techn.), Assoc. Cand. Sci. of department "Industrial Heat Power Engineering and system of heating supply" (IHPE) Kazan state power engineering university (KSPEU).

Shamil G. Ziganshin – Cand. Sci. (Techn.), Assoc. Cand. Sci. of department "Industrial Heat Power Engineering and system of heating supply" (IHPE) Kazan state power engineering university (KSPEU).

Yury V. Vankov – Dr. Sci. (Techn.), Prof. of department "Industrial Heat Power Engineering and system of heating supply" (IHPE) Kazan state power engineering university (KSPEU).

Ranis R. Garipov – Mag. Sci. (Techn.) of department "Industrial Heat Power Engineering and system of heating supply" (IHPE) Kazan state power engineering university (KSPEU).

Поступила в редакцию

26 июня 2017 г.