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Abstract: Prandtl’s two-layer model of the turbulent boundary layer is considered and the 

expression obtained through the use of the model is applied to calculate the heat transfer 

coefficient, calculations for which agree well with experimental data on mean values of the 

coefficients for various bodies. Determination of parameters of this expression is shown for the 

case of calculating local heat transfer coefficients in the entrance regions of the channels. The 

main parameters are dynamic velocity, dimensionless thickness of the boundary layer and 

dimensionless thickness of the viscous sublayer. Based on the power-law and logarithmic 

velocity profiles, expressions are obtained for calculating the dimensionless parameters of the 

turbulent boundary layer. A satisfactory agreement of the results of calculations of local heat 

transfer coefficients for the flow over a flat plate and the pipe flow is shown. The presented 

approach represents a theoretical basis for modeling the local heat transfer for bodies of more 

complex shapes, if the friction coefficients are known.  
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Introduction 

Solving the problems of mathematical modeling and improving the efficiency of heat 

transfer processes represent an important task, which is relevant for practically all industries as 

well as for power engineering [1–4]. Several monographs and textbooks have been published in 

recent years in this field [5–7].  

In the course of solution of the problems of mathematical modeling of heat transfer 

processes, in addition to the average heat transfer coefficients in the flow around various bodies of 

relatively small spills (for example, at the entrance regions of short channels), the calculation of 

local heat transfer coefficients must be performed. The hydrodynamic stabilization of the boundary 

layer in the channels takes place at the entrance region, the length of which ranges from 20 to 50 

pipe diameters, depending on the Reynolds number.  

The purpose of the present work is to present examples of calculations of local heat transfer 

coefficients for flows over a flat plate and in a pipe based on the application of Prandtl’s boundary 

layer model.  
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Prandtl’s two-layer model of the turbulent boundary layer is the simplest model from the 

standpoint of its mathematical description; however, it gives results for the transfer coefficients, 

which are only slightly different from the results obtained via the more complex models (Karman, 

Deissler, Levich, Hanratty, Owen, Van Driest and others).  

Based on application of Prandtl’s model, an expression for the heat transfer coefficient was 

obtained in the form [8, 9]:  
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where α is heat transfer coefficient, W/m
2⋅K; Pr is Prandtl number; u* is dynamic velocity, m/s; 1R  

is dimensionless thickness of the viscous sublayer (for fully-developed flat plate flow 1 11,6R  ); 

  /uR  is dimensionless thickness of the boundary layer; δ is thickness of the boundary 

layer, m;   is kinematic viscosity, m
2
/s; 0,4   is turbulence constant; ρ is density of the 

medium, kg/m
3
; pc  is specific heat capacity of the medium, J/kg⋅K.  

Expression (1) gives satisfactory results of calculations for average heat transfer 

coefficients under various flow conditions in the channels [8, 9]. 

The use of expression (1) for calculating local heat transfer coefficients is discussed below.  

Local heat transfer from a plate 

At first, let us consider an example of flow over a flat plate in the turbulent stationary 

mode. For this case, we need to determine the main parameters in expression (1) depending on the 

distance of the free-stream flow in the longitudinal direction of the plate. Then for the flat plate 

flow (m=0,57), we can write  
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Dynamic velocity is expressed through the local friction factor of the plate fхC :  

2/fхх Cuu   ,    (3) 

where u  is external-flow velocity, m/s.  

For the flat plate flow at Re /x u x   in the range from 10
5
 to 10

6
, 0,20,058 / Refx xC  , 

where Reх  is Reynolds number; x is longitudinal coordinate, m.  

An expression for the local value of thickness of the turbulent boundary layer on the plate, 

as is known, has the form  
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Then an expression for the value of хR  can be obtained from (3) and (4) in the form: 

0,80,37 Re / 2.x x f xR C      (5) 

Dimensionless thickness of the viscous sublayer 1хR  can be expressed as a function of the 

coordinate, which can be found from the power-law velocity profile on the plate:  
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where for 40 700y  ,   8,74;С n   7n . 

In the viscous sublayer, the velocity profile is described by the linear function:  
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At the boundary of the viscous sublayer, functions (6) and (7) give the identical value   
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The value ( )C n  can be determined from the velocity profile (6); at у  and  uu , we 

have 
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As a result, from (8)–(10) we obtain for n=7 a local value, where / 2x fxu u C   (3); 

thus, we have  
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Calculations reveal that the value obtained via (11) practically does not change and is equal 

to 1x 12,4R  , which is close to the value 1 11,6R   provided by the boundary layer theory. It is 

likely that a small discrepancy is due to an error of the approximation of the velocity profile by a 

power-law function. Therefore, we can adopt 1 1 11,6xR R  .  

A velocity profile in the turbulent region of the boundary layer is also described by a 

logarithmic function having the form  
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At the boundary of the viscous sublayer, the linear velocity profile and the logarithmic one 

take the same value, i.e. at 1y   : 1 1/u u R   and  

1 12,5ln 5,5R R  .    (13) 

This expression leads to the constant value 1 11,63R  . 

The local heat transfer coefficient on the plate is calculated via the known criterial 

expression [1]  

0,8 0,43Nu 0,03Re Prx x ,     (14) 

where Nu /x xx    is local Nusselt number;   is thermal conductivity of the medium, W/m K.  

Expression (2) can be written in a dimensionless form with xu  determined from (3) 
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From calculations via (14) and (15) at 5Re 2 10x    in line with expression (14), we have 

Nu 513,6x  , and line with (15), we have Nu 502,5x   (at Pr 1 ). 

The deviation is around 3%. At 6Re 10х  , accordingly we obtain Nu 1861х   and 

Nu 1882х  , and the deviation is around 2%.  
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Thus, adequacy of expression (15) for Nuх  with parameters (5) and 1 11,6R   is proved 

for modeling of local heat transfer on the plate under turbulent flow conditions.  

Heat transfer at the entrance region of the pipe 

At turbulent motion of a single-phase flow in a pipe, length of the hydrodynamic 

stabilization region 50CTl d , where d is pipe diameter [1, 10]. At the entrance region, the flow 

velocity on the channel axis changes from an average inlet value avu  to a value maxu  present 

beyond the hydrodynamic stabilization region. Taking into account that the thickness of the 

turbulent boundary layer (4) depends on the longitudinal coordinate x as 4 5~ x , the flow 

velocity on the axis can be approximately determined from the expression  

 4 5
max( ) ( ) /x av m x CTu u u х l  ,  CTx l ,  (16) 

where at x=0 we have max avu u  (entrance to the pipe); at CTх l , max av mu u u  , where 

4mu u ; at 0 CTx l  , ( )4m xu u  is velocity on the axis, m/s.  

In the literature, there is no function for the friction coefficient for the entrance region of 

the pipe; therefore, for the first approximation at CTx l , we make use of the expression for the 

flat plate flow f xC  and the dynamic velocity in formula (3).  

The value of xR  is calculated via formula (5), where the Reynolds number is calculated 

through the velocity from (16), similarly to calculation of f xC .  

In addition, from the logarithmic profile (12), one can obtain a local value of xR  for the 

entrance region of the pipe. For  uu  and у , we have  
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Length of the hydrodynamic stabilization region in a circular pipe can be approximately 

estimated from expression (4) at R  and 1,15 cpu u  . We obtain 
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where R  is pipe radius, m. 

The calculation shows that the ratio of the local heat transfer coefficient х  (2) to the 

average one  at / 1,0x d   becomes / 1,35x    4(Re 5 10 )d   . In monographs [1, 7, 10], the 

value / 1,34x    was given. The calculations of /x   are in satisfactory agreement with the 

known corrections, which take into account the entrance region in the pipe at different Reynolds 

numbers and, accordingly, length of the entrance region (18).  

Conclusions 

The use of an expression for heat transfer coefficient obtained earlier by the authors via 

Prandtl’s model is considered for the case of local heat transfer at the entrance regions of the 

channels. The local boundary layer parameters for flows over a flat plate and in a pipe are 

determined. An agreement of the results of calculations for local heat transfer coefficients versus 

known results is shown. The presented approach is a theoretical basis for modeling local heat 

transfer for bodies having different geometries of streamlined surfaces.  
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