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Abstract: Prandtl’s two-layer model of the turbulent boundary layer is considered and the
expression obtained through the use of the model is applied to calculate the heat transfer
coefficient, calculations for which agree well with experimental data on mean values of the
coefficients for various bodies. Determination of parameters of this expression is shown for the
case of calculating local heat transfer coefficients in the entrance regions of the channels. The
main parameters are dynamic velocity, dimensionless thickness of the boundary layer and
dimensionless thickness of the viscous sublayer. Based on the power-law and logarithmic
velocity profiles, expressions are obtained for calculating the dimensionless parameters of the
turbulent boundary layer. A satisfactory agreement of the results of calculations of local heat
transfer coefficients for the flow over a flat plate and the pipe flow is shown. The presented
approach represents a theoretical basis for modeling the local heat transfer for bodies of more
complex shapes, if the friction coefficients are known.
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Introduction

Solving the problems of mathematical modeling and improving the efficiency of heat
transfer processes represent an important task, which is relevant for practically all industries as
well as for power engineering [1-4]. Several monographs and textbooks have been published in
recent years in this field [5-7].

In the course of solution of the problems of mathematical modeling of heat transfer
processes, in addition to the average heat transfer coefficients in the flow around various bodies of
relatively small spills (for example, at the entrance regions of short channels), the calculation of
local heat transfer coefficients must be performed. The hydrodynamic stabilization of the boundary
layer in the channels takes place at the entrance region, the length of which ranges from 20 to 50
pipe diameters, depending on the Reynolds number.

The purpose of the present work is to present examples of calculations of local heat transfer
coefficients for flows over a flat plate and in a pipe based on the application of Prandtl’s boundary
layer model.

22



Ipobnemor snepeemurxu, 2019, mom 21, Ne 3-4

Prandtl’s two-layer model of the turbulent boundary layer is the simplest model from the
standpoint of its mathematical description; however, it gives results for the transfer coefficients,
which are only slightly different from the results obtained via the more complex models (Karman,
Deissler, Levich, Hanratty, Owen, Van Driest and others).

Based on application of Prandtl’s model, an expression for the heat transfer coefficient was
obtained in the form [8, 9]:
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where o is heat transfer coefficient, W/m%K; Pr is Prandtl number; u. is dynamic velocity, m/s; R
is dimensionless thickness of the viscous sublayer (for fully-developed flat plate flow Ry =11,6);
Rs =u«d/v is dimensionless thickness of the boundary layer; & is thickness of the boundary
layer, m; v is kinematic viscosity, m%/s; x =0,4 is turbulence constant; p is density of the

medium, kg/m?>; Cp is specific heat capacity of the medium, J/kg-K.

Expression (1) gives satisfactory results of calculations for average heat transfer
coefficients under various flow conditions in the channels [8, 9].

The use of expression (1) for calculating local heat transfer coefficients is discussed below.

Local heat transfer from a plate

At first, let us consider an example of flow over a flat plate in the turbulent stationary
mode. For this case, we need to determine the main parameters in expression (1) depending on the
distance of the free-stream flow in the longitudinal direction of the plate. Then for the flat plate
flow (m=0,57), we can write
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Dynamic velocity is expressed through the local friction factor of the plate C#,:

Usy =Ueo,[Cy /2, ®)

where U, is external-flow velocity, m/s.
For the flat plate flow at Rey =uy,x/v in the range from 10° to 10°, Cy, = 0,058/ Re%?,

where Re, is Reynolds number; X is longitudinal coordinate, m.
An expression for the local value of thickness of the turbulent boundary layer on the plate,
as is known, has the form
_0,37x
Re?gz '
Then an expression for the value of Rg, can be obtained from (3) and (4) in the form:

Rsx =0,37Re38 [Ct /2. (5)

Dimensionless thickness of the viscous sublayer Ry, can be expressed as a function of the
coordinate, which can be found from the power-law velocity profile on the plate:

i=C(n>(%j]/n ~c(m) ()", (©)
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)
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where for 40<y* <700, C(n)=8,74;, n=7.
In the viscous sublayer, the velocity profile is described by the linear function:
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At the boundary of the viscous sublayer, functions (6) and (7) give the identical value
1/n
R= 42— 4] ®
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The value C(n) can be determined from the velocity profile (6); at y =90 and u=uU,, we
have

Lo _ cmyrg¥™. )
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Then
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As a result, from (8)—(10) we obtain for n=7 a local value, where U,y = Uy /C 12 (3);

thus, we have

E
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Calculations reveal that the value obtained via (11) practically does not change and is equal
to Ryx =12,4, which is close to the value R; =11,6 provided by the boundary layer theory. It is

likely that a small discrepancy is due to an error of the approximation of the velocity profile by a
power-law function. Therefore, we can adopt Rjy =R; =11,6.

A velocity profile in the turbulent region of the boundary layer is also described by a
logarithmic function having the form
Y _osm®Y 55, 12)
U* A%
At the boundary of the viscous sublayer, the linear velocity profile and the logarithmic one
take the same value, i.e. at y=01: up/u, =Ry and
Ry =2,5InR; +5,5. (13)
This expression leads to the constant value Ry =11,63.
The local heat transfer coefficient on the plate is calculated via the known criterial
expression [1]
Nuy =0,03Re2® pro.43, (14)
where Nuy = ayX /A is local Nusselt number; A is thermal conductivity of the medium, W/m K.

Expression (2) can be written in a dimensionless form with Uy determined from (3)

Rey [C /2 Pro43
N X f x (15)

"X =116+ 2,5In(Ry, /116)

From calculations via (14) and (15) at Rey = 2-10° in line with expression (14), we have
Nuy =513,6, and line with (15), we have Nuy =502,5 (at Pr=1).

The deviation is around 3%. At Re, =106, accordingly we obtain Nu, =1861 and
Nu, =1882, and the deviation is around 2%.
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Thus, adequacy of expression (15) for Nu, with parameters (5) and Ry =11,6 is proved

for modeling of local heat transfer on the plate under turbulent flow conditions.

Heat transfer at the entrance region of the pipe

At turbulent motion of a single-phase flow in a pipe, length of the hydrodynamic
stabilization region lct <50d , where d is pipe diameter [1, 10]. At the entrance region, the flow

velocity on the channel axis changes from an average inlet value Ugy to a value Umax present
beyond the hydrodynamic stabilization region. Taking into account that the thickness of the

turbulent boundary layer (4) depends on the longitudinal coordinate X as §~x4/5, the flow
velocity on the axis can be approximately determined from the expression

4/5
Umax(x) =Yav +Um(x) (x/lcT) / , (x<let), (16)
where at x=0 we have Upgx =Ugy (entrance to the pipe); at x =/cT, Umax = Uay +Upy , Where
Ump =4U,; at 0<x<lcT, Uy :4u*(x) is velocity on the axis, m/s.

In the literature, there is no function for the friction coefficient for the entrance region of
the pipe; therefore, for the first approximation at x <lcT , we make use of the expression for the

flat plate flow Cs y and the dynamic velocity in formula (3).
The value of Rgy is calculated via formula (5), where the Reynolds number is calculated
through the velocity from (16), similarly to calculation of Cy .
In addition, from the logarithmic profile (12), one can obtain a local value of Rgy for the
entrance region of the pipe. For u=u,, and y =3, we have
Rsx = exp{OA[M]—S, 5} . 17)
Usex

Length of the hydrodynamic stabilization region in a circular pipe can be approximately
estimated from expression (4) at 8~ R and U, ~1,15u, . We obtain

5/4 ya
(R 1,150,
'CT‘(WJ [ v j ’ (18)

where R is pipe radius, m.
The calculation shows that the ratio of the local heat transfer coefficient o, (2) to the

average one a.at x/d =1,0 becomes ay /a0 =135 (Rey =5.10%4). In monographs [1, 7, 10], the
value oy /a=1,34 was given. The calculations of oy /o are in satisfactory agreement with the

known corrections, which take into account the entrance region in the pipe at different Reynolds
numbers and, accordingly, length of the entrance region (18).

Conclusions

The use of an expression for heat transfer coefficient obtained earlier by the authors via
Prandtl’s model is considered for the case of local heat transfer at the entrance regions of the
channels. The local boundary layer parameters for flows over a flat plate and in a pipe are
determined. An agreement of the results of calculations for local heat transfer coefficients versus
known results is shown. The presented approach is a theoretical basis for modeling local heat
transfer for bodies having different geometries of streamlined surfaces.
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