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Introduction 

We list the problems related to deterministic description of thermal conductivity during 

phase transformations. The first problem concerning deterministic Fourier model and the classical 

Stefan problem [1] is in infinity of propagation velocity of initial temperature perturbations, as 

well as in infinity of initial velocity of the phase boundary movement. The second problem is that 

the deterministic model did not describe the time dependent deformation of the originally flat form 

of the phase transition. 

The study of effects in fast-flowing manifestations of heat conduction goes back to the 

works of Maxwell–Cattaneo–Lykov described in [2, 3]. These papers describe the generalized 

Fourier law: 

   , , , grad , , , ( , , , ) // rTq x y z t x x y z t q x y z t t        ,          (1) 

which takes into account the final rate of heat propagation. Here ( , , )x y z  are the spatial 
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coordinates; t is time coordinate;  q  is heat flow density;  T  is temperature;    is coefficient of 

thermal conductivity;  a  is coefficient of thermal diffusivity;  r  is heat flow relaxation time, 

which is connected with the rate of heat propagation vT  by the ratio vT ra  . Expression 

(1) has a simple physical meaning: when a temperature gradient occurs, it takes some time to 

establish the heat flow, when grad 0T   the heat flow does not disappear instantaneously, but 

decays with the relaxation time. After analyzing the generalized problem of heat conduction for a 

half-space, the boundary temperature of which changes at the initial moment of time by a certain 

amount, remaining further constant, A.V. Lykov gave a substantiation of the physical meaning of 

the final velocity of heat propagation, which is a time derivative of the depth of heat penetration. 

Expression (1) is reduced to a deterministic transfer equation of the hyperbolic type: 

     

   

2 2
, / Δ , , /

/ ( ) , / (1 / ) ,  ( )

r

r r

T M t t a T M t T M t t

c F M t t F M t

       

        

, ,    0M D t        (2) 

and the corresponding boundary problems of heat conduction for equation (2) in generalized form. 

Generalized transfer problems are significantly different from the classical ones, being more 

complex when finding analytical solutions to these problems. This results in very insignificant 

progress in finding exact analytical solutions of boundary problems for equation (2). As it will be 

shown below, these analytical values are involved in dispersion formation. At the same time, it is 

necessary to note considerable attention to the Stefan problem from physicists studying the impact 

of laser radiation on matter [5–9]. 

In this paper, we present a description of the random behavior of highly non-stationary heat 

conduction using the generalized Fokker-Planck-Kolmogorov equation (hereinafter FPK) for 

probability density (hereinafter PD), from which the problem statements for the hyperbolic heat 

equation are obtained. The novelty lies in the fact that stochastic formulations of the Stefan type 

for hyperbolic thermal conductivity have so far been absent. The bibliography and the main ideas 

of such a stochastic description of heat conduction problems are presented in [2, 3]. The basic 

statement is as follows: the solution of a deterministic problem is the average value of its 

stochastic analog. The urgency of the problem lies in the fact that the deterministic task does not 

allow to identify the features that arise as a result of taking into account the random external 

influence on the described phenomena. In [3], it was shown how dispersion can significantly 

change the understanding of the conclusions which follow from the analysis of deterministic 

solutions to the problems posed. The study of the temporal behavior of dispersion made it possible 

to obtain the effect of dispersion decrease described in [3] at initial times. This effect makes it 

possible to plan experiments related to phase transitions. Here we will consider analysis of 

dispersion with a powerful pulsed thermal impact on the substance. 

Stochastic model of the Stefan problem, which takes into account the finite rate of 

heat transfer 

A stochastic model of the classical Stefan problem, based on the generalized FPK equation 

connected with the parabolic heat equation, was proposed in [3]. We give the formulation of this 

problem. First, we introduce the notations for the stochastic description of the Stefan problem, 

taking into account the finite rate of heat transfer. We denote by 
1( , , )P x t   the probability density 

in the spatial domain (1)0 ( )yx M t   (solid phase), and by 
2( , , )P x t   the probability density in 

the spatial domain (1)( )yx M t  (liquid phase), where 
(1)

( )yM t  is average velocity of the interface;  

t  is time;  x  is spatial coordinate;    is random characteristic of the temperature field in both 

areas. We also denote the average values as 
(1)

( , ) ( , , )iTiM x t P x t d





      ( 1,2)i  ; the 
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second order moment as 
(2)( , ) ( , , )Ti iM x t P x t d






    , ( 1,2)i  ; dispersion as 

2 2( , ) ( , , ) ( ( , , ) )Ti i iD x t P x t d P x t d
 

 
         ( 1,2)i  . We also introduce the 

notation for PD, describing random processes occurring at the phase interface: ( , )yP t  , here   

is the random characteristic of processes which determine the behavior of phase interface. We 

denote the mean value of the time dependence of the phase boundary motion law by 

(1)( ) ( , )y yM t P t d



    , and dispersion by 

2 2( ) ( , ) ( ( , ) )y y yD t P t d P t d
 

 
        . The Markov diffusion coefficient for random 

manifestations at the boundary is denoted as B
. The FPK equation for PD describing a random 

thermal field in the solid state region is 

 

 

2 2
1 1

(1)

( , , ) / ( ( , , ) ( , , )) / 0,5 ( , , ) / ,1 1

0< ( ),   0,  ( ).

P x t t A x t P t x B P x t

x M t ty

          

     
 (3) 

Here 
(1) (1) (1)2 2 2 2

1 1 1 1 1( , , ) ( ( , ) / ( , ) / ) / ( , )rT T TA x t a M x t x M x t t M x t         . 

The drift coefficient has a similar form 2( , , )A x t C : 

where B
 is the Markov diffusion coefficient;   ( 1,2)ia i   are thermal diffusivity 

coefficients in the regions corresponding to the normalization condition 

( , , ) 1,  0,  (0, )iP x t d t x



       and conditions at infinity ( , , ) 0iP x t   . 

Of course, the classical Stefan problem cannot claim to describe the fast-flowing effects. 

There is a difference between the slow-flowing formation of ice in natural phenomena and 

melting, when a substance undergoes a short-term thermal shock effect. Although, we note, even 

in such a stochastic formulation of the classical Stefan problem, the effect of the “strange” 

dispersion behavior was revealed in [5]. The essence of the effect is as follows. At the initial time 

moment, the regular component of dispersion is zero and up to the time moment 1 /t e  (time 

units) it decreases, reaching a minimum equal to min Re (1/ ) /g e B e  . This means that at this 

time interval there is resistance to changing the shape of the phase transition front. We called this 

phenomenon the effect of striving to preserve the original form of the phase transition front. After 

the time moment 1 /t e  (time units), this resistance weakens and stops at the time moment 1t   

(time units), when min Re (1) 0g  . After this, the phase of active distortion of phase transition 

front begins. 

This seemingly insignificant effect, due to the smallness of the Markov diffusion 

coefficient B
 and time 1 /t e  (time units), may be important for thin technological processes, 

when it is required to preserve the initial planar shape of either the grown crystal or the planar 

shape of a solid body as long as possible under other thermal impacts, not necessarily having the 

nature of phase transformations, for example when applying nanocoatings. Knowing how the 

dispersion yD  changes over time, one should stepwisely conduct the technological process, 

2 2
2 2 2 2

(1)

( , , ) / ( ( , , ) ( , , )) / 0,5 ( , , ) / ,  

( ) ,  0,  ( ),y

P x t t A x t P x t B P x t

M t x t

          

       



Проблемы энергетики, 2019, том 21, № 3-4 

119 

starting from time moment 0 t  up to 1 /t e  (time units). Then make a stop, then start again, 

and periodically repeat this procedure many times. In this case, unnecessary random effects will be 

neutralized, which contribute to the distortion of flat shape of a solid body exposed to external and 

internal random effects. 

In this paper, we study one of the variants of stochastic formulation for the PD problem of 

the Stefan type. 

We present the following problem statement for PD. We assume that a powerful thermal 

impulse affects a substance when its duration 1/  is comparable with the time of thermal 

relaxation r . We also assume that a fixed boundary is exposed to radiation with heat flow 

capacity equal to 
0 exp[ ]q t , and a heat flow of capacity equal to 

1 exp[ ]q t , where 
1 0q q . 

acts on a moving boundary. The stochastic formulation of the problem for PD on the fast-flowing 

process of heat conduction with a pulsed effect of powerful radiation on a substance has the 

following form: 

 

(4) 

 
Here:  

(1) (1) (1)2 2 2 2
1( , , ) ( , , )( ( , ) / ( , ) / ) / ( , )T T rT T TA x t C P x t a M x t x M x t t M x t                  (5) 

гран(0, , ) ( , ),  ( , ),  0 . T TP t t t                                      (6) 

(1)
( )

(1) 2 (1) 2

(1) (1) (1)
1

2 (1) 2 (1)

( , , ) /

( ( ( ) / ( ) /

exp[ ]) ( ( ), , ) / ( ( ), )) /

0,5 ( ( )), , ) / ,  ( ),  0,  ( ; ).

y
T x M t

y r y

T y yT

T y y

P x t x

L dM t dt d M t dt

q t P M t t M M t t

B P M t t x M t t





   

      

    

        

                            (7) 

(1)( ,0, ) ( , ),  0 (0),  ( , ).T Tini yP x x x M                       (8) 

0( , , ) / 0,  0,  ( , )T tP x t t t        .                 (9) 

0(0) consty yM M  .                   (10) 

0 0( ) / consty t ydM t dt M   .                                                       (11) 

Comparative analysis of the mathematical expectations of the hyperbolic and 

parabolic models of the Stefan problem 

The task for the mathematical expectation corresponding to the problem (4) - (11) has the 

following form [8]: 
(1) (1) (1)2 2 2 2

(1)

( , ) / ( , ) / ( , ) / ,  

0 ( ),  0.

r T T T

y

M x t t M x t x a M x t x

x M t t

        

  
            (12) 

(1) (1)
0(0, ) (0, ),  0T TM t M t t  .                (13) 

(1)
0(0, ) / exp[ ],  0TM t x q t t     .               (14) 

(1) (1) 2 (1) 2 (1)
1( , ) / / / exp[ ],  0.y r y yTM M t x L d M dt L dM dt q t t               (15) 

(1)(1)
0(0) consty yM M  .                  (16) 

2 2

(1)

( , , ) / ( ( , , ) ( , , )) / 0,5 ( , , ) / , 

0< ( ),  0,  ( ).

T

y

P x t t A x t P t x B P x t

x M t t

          

     
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(1)
0( ) / 0y tdM t dt   .                 (17) 

The following functions satisfy equations (12)–(17)  

 

 

 

      (18) 

 

At 1/ r    expression (18) is transformed to the form:  

(1) (1)
00( , ) (0, ) exp[ / ] /rT TM x t M t q t x     .               (19) 

By substituting (19) into (20), we obtain the expression 

 

          

(1) (1) 2 (1) 2 (1)

1 0

( , ) / / /

(1 / ( ))( )exp[ / ],  0.

y y yT

r r

M M t x d M dt dM dt

L q q t t

    

       
      (20) 

The solution for equation (20) is: 

(1)(1)
1 00( ) ( )[1 exp[ / τ ]( / 1) / ( )y r r ryM t M q q t t L        .             (21) 

These solutions were obtained and described in [8]. Direct substitution ensures that the 

solutions of the corresponding problems for mathematical expectations 
(1)

( , )TTM t x  and 
(1)( )yyM t  

based on the parabolic heat equation and the classical Fourier law have the following form: 

 

   

            (22) 

 

(1)(1) 2 2
1 0 1 00

2 2 1
1 0

( ) 2 / arctg{( / ( ))

tg[ / (2 )( ( ) (1 exp( ))]}.

yy yyM t M a q q q q

q q L a t

     

     

             (23) 

For a comparative analysis of solutions with hyperbolic and parabolic representations of the 

studied Stefan problem, it is necessary to transform solutions (22) - (23) at . We obtain: 

 
  

  (24) 

 

 

 

  

    (25) 

 

(1) (1)
0

0

( , ) (0, )

exp[ / ]sin( (1 ) / ) / ( (1 ) / .

T T

r r r

M x t M t

q t x a a

 

          

(1) (1)
00(0, ) / exp[ ]sin( / ) /TT TTM M t q a t x a     

(1) (1)
00(0, ) exp[ / ]sin( / ) / .r r rTT TTM M t q a t x a      

(1)(1) 2 2
1 0 1 00

2 2
1 0 .

( ) 2 arctg{( /( ))

tg[ /(2 )( / (1 exp( / ))]}

yy ryy

r r

M t M a q q q q

q q L a t

     

      
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Fig.1. Relationship between temperature and the spatial coordinate: 

 i=1 is for parabolic model; i= 2 is for hyperbolic model 

 

The curves for temperature dependences of (1)( , )TM x t  and (1)( , )TTM x t  are presented in 

Figs. 1 and 2. They show that solutions of problems for the hyperbolic and parabolic equations are 

not always of the same qualitative nature. If the function (1)( , )TTM x t  oscillates with a change in x, 

then the function (1)( , )TM x t  is strictly monotonic. For x values for which the sine in expression 

(24) is equal to 0,  
(1)( , )TTM x t  is constant in time, and 

(1)( , )TM x t changes exponentially . 

 
Fig.2. Relationship between temperature and time:  

i=1  is for parabolic model; i= 2 is for hyperbolic model 
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Fig. 3. Relationship between phase interface and time:  

i=1 is for parabolic model; i= 2 is for hyperbolic model  
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Fig. 4. Relationship between phase interface movement rate and time:  

i=1 is for parabolic model; i= 2 is for hyperbolic model. 
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Figures 3 and 4 show behavior of motion laws for the phase transition front 
(1)( )yM t  and 

(1)( )yyM t . Figures 5 and 6 show behavior of motion laws for speeds 
(1)( ) /ydM t dt  and 

(1)( ) /yydM t dt . A model with a parabolic equation predicts that the phase transition process begins 

at a maximum speed, which, we note, can be arbitrarily large, depending on the ratio between 
0q  

and 
1q . According to the hyperbolic model, the phase transition front accelerates from zero speed 

to the maximum one not instantaneously, but during some time, determined by r . The maximum 

value of 
(1)( ) /ydM t dt  is limited above by the constant / ra  . Using relations (27)-(29), we 

can establish a relationship between the temperature at the front 
(1) (1)( ( ), )yTM М t t  and the 

kinematic characteristics of the front 
(1)( ) /ydM t dt  and 

2 (1) 2( ) /yd M t dt . For hyperbolic model 

we obtain  

(1) (1)(1) 2 2
0 1 00( ( ), ) [( ) / ( ( )][ / / )] .y r y y yT TM М t t M q L q q L d M dt dM dt M            (26) 

In a model with a parabolic equation, we get the following relation: 

(1)(1) (1)
0( ), ) ( ( ) / ) (ln( ) / /yy r yyTTМ t t M L a a L d M dt       .             (27) 

Comparative analysis of dispersions of parabolic and hyperbolic models of the Stefan 

problem 

The derivation of equations for PD and dispersion corresponding to the Stefan problems is 

not different from those proposed in [9]. Here we present the formulation of the problem for 

dispersion corresponding to the hyperbolic model of the investigated Stefan problem (20)–(25). 

This solution has the following form: 

(1) (1) (1)2 2 2

(1)

( , ) / [(2 ( , ) / 2 ( , )) / ( , )] ( , ) ,  

0,  (0, ( )).

T r TT T T

y

D x t t a M x t x M x t M x t D x t B

t x M t

        

 
          (28) 

(1)2 2 (1)
0( ,0) ( ) ( )( ) ,  [0, (0)]T Tini yTiniD x D x x M x M    . 

Dispersion of the phase transition front is described by the following equations: 

(1) (1)2 2 (1)
22 2( , ) / [(2 ( , ) / ) / ( , )] ( , ) ,  0,  ( ( )), )y T yT TD x t t a M x t x M x t D x t B t x M t         . (29) 

(1)2 2 (1)
0( ,0) ( ) ( )( ) ,  [ (0), )T Tini yTiniD x D x x M x M    .              (30) 

Taking into account the fact that equations (12) - (17) are valid, equations (20) - (22) can be 

rewritten by replacing the right-hand side with the left-hand side: 

(1) 2 (1)( , ) / [ ln( ( , )) ) / ] ( , ) ,   0,  (0, ( ))T T yTD x t t M x t t D x t B t x M t        .  

From here we get solutions for dispersions in the form: 

(1) (1)2 2 2 (1)
00

( , ) [ / ( ( , )) ( )]( ( , )) ,  (0, ( )],  0.
t

T yT TD x t B d M x x M x t x M t t                  (31) 

(1) 2 2 (1) 2
00

( ) [ / ( ( )) ]( ( )) ,  [0,10]
t

y y yD t B dx M x M t t                 (32) 

For parabolic model we have: 

(1) 2 2 (1) 2
00

( ) [ / ( ( )) ]( ( )) ,  [0,10]
t

yy yy yyD t B dx M x M t t    , where  
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                (33) 

 

 

Since the temperature mode during random impacts on a substance is unstable, to 

investigate the distortion of the phase transition front is of interest. This is also important because 

the initial moments of the motion velocities of this front differ greatly in the models under 

consideration. 

So it turns out that the integrals 
(1) 2

0
/ ( ( ))

t

yB dx M x  and (1) 2

0
/ ( ( ))

t

yyB dx M x  cannot 

be resolved in quadratures, therefore it is proposed to find them numerically using the fourth-order 

Runge-Kutta method as a solution to the following Cauchy problem: 

              (34) 

 

Further we present data for calculation of some material. The density is 
3 32,7 10  kg / m   . The heat of phase transition is 71,0449 10  J /L kg  . Heat conductivity 

coefficient is 62  W / (m deg)   . The thermal diffusivity is 
6 225.8 10  m / sa   . Thermal 

relaxation time is 910  cr
  . The initial (maximum) density of the incident flow on the moving 

boundary is 11 2
1 10  W / mq  . The initial (maximum) density of the incident flow on a fixed 

boundary 9 2
0 10  W / mq  . The initial position of the phase transition front for the hyperbolic 

model is (1)
0 (0) 1 myM   . The initial position of the phase transition front for the parabolic model 

is (1)
0(0) 1 myyM  . The initial temperature for the hyperbolic model is (1)

0( ,0) 20 CTM x  . Initial 

temperature for the parabolic model (1)
0( ,0) 20 CTTM x  . Pulse time is 1/  ,sr   . As for the 

Markov diffusion coefficients, their values are not presented in any reference book. In the present 

work, it is proposed to consider them of the same order with the thermal diffusivity coefficient  
4 410 ,  10B B 

   . 

The calculation results are shown in Figs. 5 and 6. 

 

 
Fig. 5. The temporal behavior of the phase transition front dispersion 

for parabolic model  
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Fig. 6. The temporal behavior of the phase transition front dispersion 

for hyperbolic model 

Further we discuss the results of the temporal behavior of the dispersion at the phase 

transition front. As in the case of the stochastic consideration of the Stefan problem, carried out in 

[5], the effect of striving to preserve the original form of the phase transition front is also observed 

here. How can we interpret the practical application of this phenomenon for the fast process of 

heat conduction? The relaxation time is very short, is it possible to benefit from identifying the 

time of occurrence of the smallest dispersion when distortion of the phase transition front shape is 

minimal? We try to answer this question. Despite the fact that the problem is considered here in a 

flat formulation, it is possible to carry out a similar quantitative and qualitative analysis for the 

spherical initial shape of the particle. Basing on fixing the moment of smallest dispersion, it is 

possible to calculate the pulse action time at which the smallest distortion of the phase transition 

front shape is observed, and as a result of planning the experiment, to obtain the desired 

configuration of the melted particle, possibly close to the initial one. 

Conclusions 

At present, a large mathematical apparatus has been accumulated, which describes many 

phenomena of a physical nature in a deterministic way. This apparatus requires its translation, 

figuratively speaking, into “stochastic language”. In particular, in [2] one of the authors of this 

article (E.M. Kartashov) obtained numerous analytical solutions for original deterministic 

problems in thermal physics, thermo elasticity, etc., which have already been successfully used in 

practice. In recent papers of authors of this article, the possibilities of combining classical 

deterministic concepts of physical phenomena with stochastic ones are demonstrated. New effects 

can be discovered, in addition to the dispersion stability conditions described above and dispersion 

extreme properties. The practical application of the results of stochastic studies of motion laws for 

phase transition front to technological processes are of particular importance. This primarily 

concerns the determination of the time of melting and evaporation of microparticles at a powerful 

impact of pulsed laser radiation on matter. 
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