Preview

Power engineering: research, equipment, technology

Advanced search

The concept of turbulent «vortex backfill» - models and methods. Power engineering: research, equipment, technology

https://doi.org/10.30724/1998-9903-2019-21-5-97-109

Abstract

Models and methods for studying turbulence based on the concept of turbulent "vortex backfill" are presented. The essence of this concept is that the turbulent flow is considered as laminar, flowing through a "vortex backfill ", which creates internal resistance. This resistance can be considered either as distributed, or as locally concentrated. Based on the first representation, a modified Navier-Stokes equation, its approximate analytical and numerical solutions are obtained. Based on the second concept and the local fluctuation method developed for these purposes, a computer model of the turbulent flow in the pipes is obtained. Using simulation, it is shown that, when a certain system of local viscosity fluctuations is specified, the calculated flow profile corresponds to the profile of the turbulent flow velocity. The magnitude and profile of the turbulent viscosity of the flow are completely determined by the structure and properties of the "vortex backfill ". The results of the work confirm the possibility and efficiency of considering turbulence based on this concept.

About the Authors

L. E. Melamed
Joint-stock company "Intelligence"
Russian Federation

Lev E. Melamed 

Moscow




G. A. Filippov
Department of power, mechanical engineering, mechanics and control processes of Russian Academy of Sciences
Russian Federation

Gennady A. Filippov 

Moscow



References

1. Falkovich G, Sreenivasan K. Lessons from hydrodynamic turbulence. Physics. Today. 2006. pp. 43–90. doi: 10.1063/1.2207037.

2. Baumert HZ. Universal equations and constants of turbulent motion. Physica. Scripta. 2013;55:1- 12. doi:10.1088/0031-8949/2013/T155/014001.

3. Melamed LE. An equation of Turbulent Motion in Tubes. Technical Physics Letters. 2015; 41(24):23-28.

4. Cebeci T. Turbulence Models and Their Application. Horizons Publishing Inc. Long Beach. California 2004. 120 p.

5. Lee M., Moser R. D. Direct numerical simulation of turbulent channel flow up to Re=5200. Journal of Fluid Mechanics. 2015;774:395–415.

6. Aerov ME., Todes OM. Gidravlicheskie i teplovye osnovy raboty apparatov so statsionarnym i kipyashchim zernistym sloem. L . «Chemistry». 1968.510 p.

7. Zavolzhenskij MV, Rutkevich PB. Razvitaya turbulentnost' v trubah. M.: Institut kosmicheskih issledovanij Rossijskoj akademii nauk. 2007;2140:38.

8. Zagarola MV, Smits AJ. Mean-flow scaling of turbulent pipe flow. Journal of Fluid Mechanics. 1998; 373:33-79.

9. Monkewitz PA, Nagib HM. Large Reynolds number asymptotics of the streamwise normal stress in ZPG turbulent boundary layers. Journal of Fluid Mechanics. 2015;783:474-503.

10. Furuichi N, Terao Y, Wada Y. et al. Friction factor and mean velocity profile for pipe flow at high Reynolds numbers. Physics of Fluids 2015;27(9)1-16. doi: 10.1063/1.4930987

11. Yongyun Hwang. Mesolayer of attached eddies in turbulent channel flow. Physical Review Fluids. 2016; 1(064401):1-18. doi: 10.1103/PhysRevFluids.1.064401

12. Orlu R, Fiorini T, Segalini A. et al. Reynolds stress scaling in pipe flow turbulence–first results from CICLoPE. Transactions of Royal Society. 2016;375(20160187):1-6.

13. Vinuesa R, Duncan RD, Nagib HM. Alternative interpretation of the Superpipe data and motivation for CICLoPE: The effect of decreasing viscous length scale. European Journal of Mechanics– B/Fluids 2016;58:109–116.

14. Barenblatt GI, Korin A.Dzh, Prostokishin V.M. Turbulentnye techeniya pri ochen' bol'shih chislah Rejnol'dsa: uroki novyh issledovanij. Uspekhi fizicheskih nauk. 2014;184(3):265-272. https://ufn.ru/ru/articles/2014/3/e/

15. Vigdorovich II. Opisyvaet li stepennaya formula turbulentnyj profil' skorosti v trube? Uspekhi fizicheskih nauk. 2015;185(2):213- 216.

16. Barenblatt GI, Korin ADzh, Prostokishin VM. K probleme turbulentnyh techenij v trubah pri ochen' bol'shih chislah Rejnol'dsa. Uspekhi fizicheskih nauk. 2015;185(2):217-220. Available at: https://www.ufn.ru/ru/articles/2015/2/h/. Accessed to: 15 Aug 2019.

17. Reichardt H. Vollstandige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitugen. Zeitschrift fur Angewandte Mathematik und Mechanik. 1951;31(7):208-219.

18. Melamed LE, Filippov GA. Simulation of turbulence as a vortex bacfiill. Proceedings of the higher educational institutions. Energy sector problems. 2017;19(9-10):122-132.

19. Melamed LE, Filippov GA. A summarized formula for velocity of turbulent and laminar flows in pipes. Proceedings of the higher educational institutions. Energy sector problems. 2018;20(7-8):136-146.

20. Melamed LE. Method of Local Fluctuations and Simulation of Heterogeneous Media. Technical Physics Letters. 2016;42(10):990-992.

21. Kutateladze SS. Teploperedacha i gidrodinamicheskoe soprotivlenie. M: Energoatomizdat. 1990. 366 p.


Review

For citations:


Melamed L.E., Filippov G.A. The concept of turbulent «vortex backfill» - models and methods. Power engineering: research, equipment, technology. Power engineering: research, equipment, technology. 2019;21(5):97-109. (In Russ.) https://doi.org/10.30724/1998-9903-2019-21-5-97-109

Views: 557


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)