Preview

Power engineering: research, equipment, technology

Advanced search

Improved installation of gas filtration at thermal power plants in the preparation of fuel for urban energy systems

https://doi.org/10.30724/1998-9903-2019-21-5-124-131

Abstract

In accordance with the concept of development and modernization of energy, improvement of energy supply systems of LLC "Gazprom" processing enterprises will be aimed at the creation of highly efficient energy complexes and gas saving through the introduction of new combined units based on gas turbine units (GTU), providing a minimum level of costs. Improving the infrastructure of power equipment of gas processing enterprises, including fuel treatment systems, determines the efficiency of its operation. The improved design of the cyclone filter is proposed for the modernization of the gas filtration line of the fuel treatment system in order to improve the reliability of both the infrastructure and the energy systems and complexes. The device can be used for separation of suspensions at the point of gas preparation of the KS and GDS, including for gas turbine and combined cycle power plants TPP. The results of bench tests of the proposed design of the cyclone filter and numerical studies of the aerodynamic parameters of the cyclone based on the methods of Computational Fluid Dynamics (CFD). The distributions of tangential and axial flow velocities in the annular space of the cyclone are obtained in the field experiment. Similar devices can also be used to increase the degree of purification from fine particles of PM10, PM2,5 atmospheric emissions of energy systems, due to the reduction of the size of the captured particles from the average values for 

About the Authors

A. T. Zamalieva
LLC "Gazprom transgaz Kazan"
Russian Federation

Albina T. Zamalieva 

Arsk 




M. G. Ziganshin
Kazan State Power Engineering University
Russian Federation

Malik G. Ziganshin 

Kazan

 



References

1. Shapovalo AA. Osnovnye napravleniya razvitiya sistem energetiki ob"ektov PAO «Gazprom» v sovremennyh usloviyah. Gazovaya promyshlennost'. 2016;11(745):78-89.

2. Kudinov AV, Markov ND. Informacionnye tekhnologii dlya povysheniya resursoeffektivnosti energokompleksov neftegazodobyvayushchih kompanij. Vestnik nauki Sibiri. 2012;2(3):64-73.

3. Sultangazin IA, Shomova TP, Shomov PA. Primenenie teplovyh nasosov na gazopererabatyvayushchih predpriyatiyah. Santekhnika, otoplenie, kondicionirovanie. 2015;6(162): 48-51.

4. Mothilal T, Pitchandi K. Effect of mass flow rate of inlet gas on holdup mass of solid cyclone heat exchanger. Applied Mechanics and Materials. 2014;592:1498-1502.

5. Temnikova EYu, Bogomolov AR, Petrik PT. Issledovanie harakteristik ciklona s vnutrennimi elementami. Vesti Kuzbasskogo gosudarstveenogo tekhnicheskogo universiteta. 2009;2:140-144.

6. Serebryansky DA, Zakharov AA., Vlasihin B. Ciklonnye pyleuloviteli. Malozatratnaya modernizaciya. Хімічна промисловість України. 2013;3:70-74.

7. Zhao B, Wang D, Su Y. Gas-Particle Cyclonic Separation Dynamics: Modeling and Characterization. Separation and Purification Reviews. 2018:3-31.

8. Chu K. W, Chen J, Wang B. Understand solids loading effects in a dense medium cyclone: effect of particle size by a CFD-DEM method. Powder Technology. 2017;320:112-174.

9. Asimova NN, Bulygin YuI, Kuptsova IS. Sravnitel'nyj analiz aerodinamicheskih harakteristik centrobezhnyh pyleulovitelej pri provedenii parallel'nyh sravnitel'nyh ispytanij. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta. 2017;3(90):156-165.

10. Fassani FL, Goldstein LA study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency. Powder Technology. 2000;107:60-65.

11. Zamalieva AT, Ziganshin MG, Potapova LI. Ob effektivnosti sushchestvuyushchih metodov ciklonnoj fil'tracii pri osazhdenii melkodispersnyh chastic klassov PM10, PM2,5. Izvestiya KazGASU. 2017;4(42): 415-424.

12. Li X, Song J, Sun G. Experimental study on natural vortex length in a cyclone separator. The Canadian Journal of Chemical Engineering. 2016;94:265-298.

13. Chu KW, Wang B, Yu AB, et al. CFD-DEM modeling of multiphase flow in dense medium cyclones. Powder Technology. 2009; 193:235-247.

14. Zhou ZY, Kuang SB., Chu KW, et al. Assessments of CFD-DEM models in particlefluid flow modeling. Journal of Fluid Mechanics. 2010;661:482-510.

15. Osama H, Magdy AB, Hesham ME, et al. Numerical study of the effect of changing the cyclone cone length on the gas flow field. Applied mathematical modelling. 2017:81-97.

16. Wang B, Chu KW, Yu AB, et al. Modeling the multiphase flow in a dense medium cyclone. Industrial & Engineering Chemistry Research. 2009;48:3628-39.

17. Ziganshin MG. Sistemy ochistki vybrosov TES. Pt. 2. Ocenki effektivnosti, verifikaciya kriteriev ocenki. Kazan': Izdatel'stvo KGEU. 2013. P.212.

18. Zamalieva AT, Ziganshin MG. Povyshenie nadyozhnosti, energeticheskoj i ekologicheskoj effektivnosti sistem gazoochistki na TES. Nadyozhnost' i bezopasnost' energetiki. 2018; 4(11):288-293.


Review

For citations:


Zamalieva A.T., Ziganshin M.G. Improved installation of gas filtration at thermal power plants in the preparation of fuel for urban energy systems. Power engineering: research, equipment, technology. 2019;21(5):124-131. (In Russ.) https://doi.org/10.30724/1998-9903-2019-21-5-124-131

Views: 523


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)