Тhe study of electronic generation effect on statical aperiodic stability of electrical power system
https://doi.org/10.30724/1998-9903-2020-22-2-51-64
Abstract
One of the key aspects in the development of power engineering all over the world is the use of distributed small-scale generation. This is both based on fuel carbon resources with a synchronized connection between sources when they are connected to the electric power grids and renewable energy sources operated in the electrical grid via frequency converters (electronic generation). The latter brings an inevitable broad use of inverters in available AC power systems. The objectives of this paper are numerous. First is the desire to study the effect of electronic generation on modes and stability of current electrical grids and electrical power systems. Another objective is to establish requirements for electronic generation control that lets us minimize actions on relay protection coordination and automation upon the integration of electronic generation in power grids. A final objective is to increase the reliability of general electrical modes. This article shows the outcomes of the study on the statical aperiodic stability of the electrical power system upon the integration of electronic generation, requirements for its statical characteristics, and the control when operated within the electrical power system.
About the Authors
A. G. FishovRussian Federation
Alexander G. Fishov
Novosibirsk
I. S. Murashkina
Russian Federation
Inna S. Murashkina
Novosibirsk
A. I. Marchenko
Russian Federation
Andrey I. Marchenko
Novosibirsk
E. Erdenebat
Russian Federation
Enkhsayhan Erdenebat
Novosibirsk
Y. S. Ivkin
Russian Federation
Efim S. Ivkin
Novosibirsk
References
1. Fishov AG, Landman AK, Serdyukov OV. SMART tekhnologii dlya podklyucheniya k elektricheskim setyam i upravleniya rezhimami maloi generatsii. Materialy 8 Mezhdunarodnoi molodezhnoi nauchno-tekhnicheskoi konferentsii «Energetika glazami molodezhi 2017»; 02–06 oktyabrya 2017, Samara Russia. 2017 pp. 27–34.
2. Marchenko AI, Fishov AG, Dronova YuV. Modelirovanie i analiz sistemnykh effektov ot prisoedineniya maloi generatsii k elektricheskim setyam. Energetika: effektivnost', nadezhnost', bezopasnost' : materialy 21 Vserossiiskoi. nauchno-tekhnicheskoi konferentsii, 2-4 dek. 2015, Tomsk, Russia, 2015. pp. 176-179.
3. Caballero V, Vernet D, Zaballos A, et al. Prototyping a web-of-energy architecture for smart integration of sensor networks in smart grids domain. Sensors (Switzerland). 2018;18(5). doi: 10.3390/s18020400.
4. Ghasempour A. Internet of things in smart grid: Architecture, applications, services, key technologies, and challenges. Inventions. 2019; 4(1). doi: 10.3390/inventions4010022.
5. Cao Y. A comprehensive review of Energy Internet: basic concept, operation and planning methods, and research prospects. J. Mod. Power Syst. Clean Energy. 2018;6(3):399-411. doi: 10.1007/s40565-017-0350-8.
6. Saleem Y, Crespi N, Rehmani MH, et al. Internet of Things-Aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions. IEEE Access. 2019;7:62962– 63003. doi: 10.1109/ACCESS.2019.2913984
7. Marchenko AI, Denisov VV, Murashkina IS. Sredstva i sposoby upravleniya parallel'noi rabotoi elektricheskoi stantsii maloi generatsii s elektricheskoi set'yu. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta. 2019;1(74):77-90. doi: 10.17212/1814-1196-2019-1-77-90.
8. Zhou Y, Ni W, Zhu Z. Architecture of Energy Internet and Its Technologies in Application Reviewed. J. Clean Energy Technol. 2017;5(4):320-327. doi: 10.18178/jocet.2017.5.4.391
9. Wu FF, Varaiya PP, Hui RS. Smart Grids with Intelligent Periphery: An Architecture for the Energy Internet. Engineering. 2015;1(4): 436-446. doi: 10.15302/J-ENG-2015111
10. Mao D, Cao X, Han X, et al. Routing Architecture of Software Defined Energy Internet. IOP Conf. Ser. Earth Environ. Sci. 2018; 192(1). doi: 10.1088/1755-1315/192/1/012067
11. Ismailov FR, SHarifov BN, Gayzinz BM, et al. Issledovanie parallel'noy raboty solnechnoy elektrostantsii s set'yu. Vestnik UGATU. 2016;20:4 (74):71-79.
12. Zharkov MA, Bachurin PA, Kharitonov SA., et al. Experiment results of laboratory tests of electrical starting system powered by a DC source. The 17 international conference of young specialists on micro/nanotechnologies and electron devices, EDM 2016; 30 June – 4 July 2016; Altai, Erlagol, Novosibirsk:NSTU; 2016. pp. 623-627 doi: 10.1109/EDM.2016.7538810.
13. Miveh MR, Rahmat MF, Ghadimi A. Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review. Renewable and Sustainable Energy Reviews. 2016; pp. 1592-1610.
14. Tsifrovaya energetika: videnie, praktiki, tekhnologii: Informatsionno-analiticheskie raboty 2018 g. Infrastrukturnyi Tsentr EnergyNet. 2018.
15. D’Arco S, Suul JA, Fossob OB. A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids. Electric Power Systems Research, May 2015;122:180-197. doi.org/10.1016/j.epsr.2015.01.001
16. Zhdanov PS. Voprosy ustoichivosti elektricheskikh sistem. M: Energiya, 1979.
17. Armeev DV, Chuvashev R. Stability operation of grid connected inverter. E3S Web of Conferences. 2019; 114: Energy Systems Research 2019: Art. 04003 (4 p.). doi: 10.1051/e3sconf/201911404003
Review
For citations:
Fishov A.G., Murashkina I.S., Marchenko A.I., Erdenebat E., Ivkin Y.S. Тhe study of electronic generation effect on statical aperiodic stability of electrical power system. Power engineering: research, equipment, technology. 2020;22(2):51-64. (In Russ.) https://doi.org/10.30724/1998-9903-2020-22-2-51-64