Application of porous materials in heat exchangers of heat supply system
https://doi.org/10.30724/1998-9903-2020-22-3-3-13
Abstract
About the Authors
N. V. RydalinaRussian Federation
Natalia V. Rydalina
B. G. Aksenov
Russian Federation
Boris G. Aksenov
O. A. Stepanov
Russian Federation
Oleg A. Stepanov
E. O. Antonova
Russian Federation
Elena O. Antonova
References
1. Kirsanov YA. Plastinchatyy teploobmennik. Patent RUS. №2478891. 10.04.2013. Byul. №10. Available at: https://patentdb.ru/patent/2478891.html. Accessed: 20 avgusta 2019.
2. Gorda VP, Kostrubov SV. Poristo-kompaktnyy teploobmennik. Patent RUS. №2001374. 15.10.1993. Byul. №37-38. https://patentdb.ru/patent/2001374. html. Accessed: 13 Аvg 2019.
3. Surguchev OV, Nesynov VI, Kulikov YuB, et al. Isparitelnyy element. Patent SSSR. №494585.5.12.75. Byul. №45. Available at: http://patents.su/2-494585-isparitelnyjj-ehlement.html html. Accessed: 20 avgusta 2019.
4. Shchukin VK. Gortyshov YuF.. Dresvyannikov FN. et al. Teploobmennik. Avtorskoye svidetelstvo SSSR. №1460575. 23.02.89. Byul. №7. Available at: http://patents.su/4-1460575-teploobmennik.html html. Accessed: 20 avgusta 2019.
5. Kirpach NS. Teploobmennaya poverkhnost. Avtorskoye svidetelstvo SSSR. №1469288. 30.03.89. Byul. №12. Available at: : http://patents.su/2-1469288-teploobmennaya-poverkhnost.html html. Accessed: 20 avgusta 2019.
6. Pelevin FV, Ponomarev AV, Semenov PY. Recuperative heat exchanger with porous metal for liquid rocket engine. Proceedings of higher educational institutions. Engineering. 2015;6: 74-81.
7. Ilyushchenko AF, Chernyak IN, Kusin RA et al. The process of obtaining porous permeable materials by electric current sintering of metal powders, fibers and grids. Dynamics of systems, mechanisms and machines. 2018;6(2):191-196.
8. Khokhlov MA, Ishchenko DA. Structural ultralight porous metals. Automatic welding. 2015; 3-4: 60-65.
9. Ishkova ZA, Kolunin VS. Vliyanie tipa i tolshchiny poristyh materialov na rezul'taty izmereniya maksimal'nogo razmera skvoznyh por. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fizikomatematicheskoe modelirovanie. Neft', gaz, energetika. 2019; 5(1):87-96.
10. Rydalina NV. Experimental study of the possibility of increasing the heat flux density. Energy Saving and innovative technologies in the fuel and energy complex. Materials of the National conference with international participation of students, postgraduates, young scientists and specialists. 2018;125-128.
11. Trushlyakov VI, Kudencov VYU, Lesnyak IYU, et al. Eksperimental'nye issledovaniya processov teplo- i massoobmena pri isparenii zhidkostej. Dinamika sistem, mekhanizmov i mashin. 2016; 1(2):10-17.
12. Gubkin AS, Igoshin DE, Trapeznikov DV. Chislennyj raschet pronicaemosti v dvumernoj poristoj srede so skeletom iz sluchajno raspolozhennyh peresekayushchihsya diskov. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, energetika. 2016;2(4): 54-68.
13. Hamadouche A, Azzi A, Abboudi S, et al. Enhancement of heat exchanger thermal hydraulic performance using aluminum foam. Experimental Thermal and Fluid Science. 2018;92l: 1-12.
14. Soleimanikutanaei S, Lin C-X, Wang D. Modeling and simulation of cross-flow transport membrane condenser heat exchangers. International Communications in Heat and Mass Transfer. 2018; 95:92-97.
15. Rodionov SP, Botalov YU, Legostaev DYU. Modelirovanie processa dvuhfaznoj fil'tracii s uchetom vozdejstviya periodicheskoj nagruzki. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, energetika. 2016;2(2):73-83.
16. Buonomo B, Di Pasqua A, Ercole D, et al. Numerical investigation on a Heat Exchanger in Aluminum Foam. Energy Procedia. 2018;148:782-789.
17. Osipov SN, Zakharenko AV. Energy-Efficient small-size heat exchangers made of porous heatconducting materials. Energetika. WPI. higher. studies'. institutions and energy. associations of the CIS. 2018;61(4):346-358.
18. Kurpatenkov AV, Polyayev VI, Sintsov AL. Sposob teploobmena mezhdu dvumya teplonositelyami. Avtorskoye svidetelstvo SSSR. №1423905. 15.09.88. Byul. №34. Available at: https://patentdb.ru/patent/1423905 html. Accessed: 20 avgusta 2019.
19. Sintsov AL, Polyayev VM, Kurpatenkov AV. Teploobmennoye ustroystvo s reguliruyemym teplosyemom. Avtorskoye svidetelstvo SSSR. №1223009. 07.04.86. Byul. №13. Available at: https://patentdb.ru/patent/1223009. html. Accessed: 20 avgusta 2019.
20. Bartis A. Resistance type fluid heating apparatus. Patent US. №3833791. 09.03.1974. Available at: http://www.freepatentsonline.com/3833791.html html. Accessed: 20 avg 2019.
21. John L, James F, Richard P. Porous plate condenser. №3394756. 05.01.1976. Available at: http://www.freepatentsonline.com/3394756.pdf html. Accessed: 20 avg 2019.
22. Popov IA. Hydrodynamics and heat exchange in porous heat exchange elements and apparatus. Intensification of heat transfer. Kazan: Center of innovative technologies, 2007; 240 p.
23. Gortyshov YF. and others. Thermal-Hydraulic efficiency of perspective methods of heat transfer intensification in heat exchange equipment channels. Kazan: Center of innovative technologies, 2009. 531 p.
24. Davletbaev V, Rydalina N, Antonova E. Experimental investigation of the heat exchange intensity. MATEC Web of Conferences 245. SPb.:2018;07002.
Review
For citations:
Rydalina N.V., Aksenov B.G., Stepanov O.A., Antonova E.O. Application of porous materials in heat exchangers of heat supply system. Power engineering: research, equipment, technology. 2020;22(3):3-13. (In Russ.) https://doi.org/10.30724/1998-9903-2020-22-3-3-13