Preview

Power engineering: research, equipment, technology

Advanced search

Application of porous materials in heat exchangers of heat supply system

https://doi.org/10.30724/1998-9903-2020-22-3-3-13

Abstract

Heat exchange capacity increase is one of the main concerns in the process of manufacturing modern heat exchange equipment. Constructing heat exchangers with porous metals is an advanced technique of heat exchange increase. A construction of heat exchangers with porous aluminum is described in this paper. The first heat transfer agent (hot water) flows through thin copper tubes installed within the porous aluminum. The second heat transfer agent (freon) flows through the pores of aluminum. Laboratory facility was created to study such a heat exchanger. Series of experiments were carried out. The purpose of the research presented here is to create a mathematical model of heat exchangers with porous metals, to perform analytical calculation of the heat exchangers and to confirm the results with the experimental data. In this case, one can`t use the standard methods of heat exchangers calculation because the pores inner surface area is indeterminate. The developed mathematical model is based on the equation describing the process of cooling the porous plate. A special mathematical technique is used to take into account the effect of tubes with water. The model is approximate but its solution is analytic. It is convenient. One can differentiate it or integrate it, which is very important. Comparison of calculated and experimental data is performed. Divergence of results is within the limits of experimental error. If freon volatilizes inside the heat exchanger, the heat of phase transition has to be taken into account alongside with heat capacity. The structure of the mathematical model makes it possible. The results presented in this paper prove the practicability of using porous materials in heat exchange equipment.

About the Authors

N. V. Rydalina
Industrial University of Tyumen
Russian Federation
Natalia V. Rydalina


B. G. Aksenov
Industrial University of Tyumen
Russian Federation
Boris G. Aksenov


O. A. Stepanov
Industrial University of Tyumen
Russian Federation
Oleg A. Stepanov


E. O. Antonova
Industrial University of Tyumen
Russian Federation
Elena O. Antonova


References

1. Kirsanov YA. Plastinchatyy teploobmennik. Patent RUS. №2478891. 10.04.2013. Byul. №10. Available at: https://patentdb.ru/patent/2478891.html. Accessed: 20 avgusta 2019.

2. Gorda VP, Kostrubov SV. Poristo-kompaktnyy teploobmennik. Patent RUS. №2001374. 15.10.1993. Byul. №37-38. https://patentdb.ru/patent/2001374. html. Accessed: 13 Аvg 2019.

3. Surguchev OV, Nesynov VI, Kulikov YuB, et al. Isparitelnyy element. Patent SSSR. №494585.5.12.75. Byul. №45. Available at: http://patents.su/2-494585-isparitelnyjj-ehlement.html html. Accessed: 20 avgusta 2019.

4. Shchukin VK. Gortyshov YuF.. Dresvyannikov FN. et al. Teploobmennik. Avtorskoye svidetelstvo SSSR. №1460575. 23.02.89. Byul. №7. Available at: http://patents.su/4-1460575-teploobmennik.html html. Accessed: 20 avgusta 2019.

5. Kirpach NS. Teploobmennaya poverkhnost. Avtorskoye svidetelstvo SSSR. №1469288. 30.03.89. Byul. №12. Available at: : http://patents.su/2-1469288-teploobmennaya-poverkhnost.html html. Accessed: 20 avgusta 2019.

6. Pelevin FV, Ponomarev AV, Semenov PY. Recuperative heat exchanger with porous metal for liquid rocket engine. Proceedings of higher educational institutions. Engineering. 2015;6: 74-81.

7. Ilyushchenko AF, Chernyak IN, Kusin RA et al. The process of obtaining porous permeable materials by electric current sintering of metal powders, fibers and grids. Dynamics of systems, mechanisms and machines. 2018;6(2):191-196.

8. Khokhlov MA, Ishchenko DA. Structural ultralight porous metals. Automatic welding. 2015; 3-4: 60-65.

9. Ishkova ZA, Kolunin VS. Vliyanie tipa i tolshchiny poristyh materialov na rezul'taty izmereniya maksimal'nogo razmera skvoznyh por. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fizikomatematicheskoe modelirovanie. Neft', gaz, energetika. 2019; 5(1):87-96.

10. Rydalina NV. Experimental study of the possibility of increasing the heat flux density. Energy Saving and innovative technologies in the fuel and energy complex. Materials of the National conference with international participation of students, postgraduates, young scientists and specialists. 2018;125-128.

11. Trushlyakov VI, Kudencov VYU, Lesnyak IYU, et al. Eksperimental'nye issledovaniya processov teplo- i massoobmena pri isparenii zhidkostej. Dinamika sistem, mekhanizmov i mashin. 2016; 1(2):10-17.

12. Gubkin AS, Igoshin DE, Trapeznikov DV. Chislennyj raschet pronicaemosti v dvumernoj poristoj srede so skeletom iz sluchajno raspolozhennyh peresekayushchihsya diskov. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, energetika. 2016;2(4): 54-68.

13. Hamadouche A, Azzi A, Abboudi S, et al. Enhancement of heat exchanger thermal hydraulic performance using aluminum foam. Experimental Thermal and Fluid Science. 2018;92l: 1-12.

14. Soleimanikutanaei S, Lin C-X, Wang D. Modeling and simulation of cross-flow transport membrane condenser heat exchangers. International Communications in Heat and Mass Transfer. 2018; 95:92-97.

15. Rodionov SP, Botalov YU, Legostaev DYU. Modelirovanie processa dvuhfaznoj fil'tracii s uchetom vozdejstviya periodicheskoj nagruzki. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, energetika. 2016;2(2):73-83.

16. Buonomo B, Di Pasqua A, Ercole D, et al. Numerical investigation on a Heat Exchanger in Aluminum Foam. Energy Procedia. 2018;148:782-789.

17. Osipov SN, Zakharenko AV. Energy-Efficient small-size heat exchangers made of porous heatconducting materials. Energetika. WPI. higher. studies'. institutions and energy. associations of the CIS. 2018;61(4):346-358.

18. Kurpatenkov AV, Polyayev VI, Sintsov AL. Sposob teploobmena mezhdu dvumya teplonositelyami. Avtorskoye svidetelstvo SSSR. №1423905. 15.09.88. Byul. №34. Available at: https://patentdb.ru/patent/1423905 html. Accessed: 20 avgusta 2019.

19. Sintsov AL, Polyayev VM, Kurpatenkov AV. Teploobmennoye ustroystvo s reguliruyemym teplosyemom. Avtorskoye svidetelstvo SSSR. №1223009. 07.04.86. Byul. №13. Available at: https://patentdb.ru/patent/1223009. html. Accessed: 20 avgusta 2019.

20. Bartis A. Resistance type fluid heating apparatus. Patent US. №3833791. 09.03.1974. Available at: http://www.freepatentsonline.com/3833791.html html. Accessed: 20 avg 2019.

21. John L, James F, Richard P. Porous plate condenser. №3394756. 05.01.1976. Available at: http://www.freepatentsonline.com/3394756.pdf html. Accessed: 20 avg 2019.

22. Popov IA. Hydrodynamics and heat exchange in porous heat exchange elements and apparatus. Intensification of heat transfer. Kazan: Center of innovative technologies, 2007; 240 p.

23. Gortyshov YF. and others. Thermal-Hydraulic efficiency of perspective methods of heat transfer intensification in heat exchange equipment channels. Kazan: Center of innovative technologies, 2009. 531 p.

24. Davletbaev V, Rydalina N, Antonova E. Experimental investigation of the heat exchange intensity. MATEC Web of Conferences 245. SPb.:2018;07002.


Review

For citations:


Rydalina N.V., Aksenov B.G., Stepanov O.A., Antonova E.O. Application of porous materials in heat exchangers of heat supply system. Power engineering: research, equipment, technology. 2020;22(3):3-13. (In Russ.) https://doi.org/10.30724/1998-9903-2020-22-3-3-13

Views: 702


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)