Сomparative analysis and prospects of the use of multi -fuel micro-thermal power stations on the basis of the steeling engine for rural areas
https://doi.org/10.30724/1998-9903-2020-22-5-3-17
Abstract
About the Authors
A. D. MekhtiyevKazakhstan
Ali D. Mekhtiyev
Karagandy
A. D. Al'kina
Kazakhstan
Aliya D. Al'kina
Karagandy
V. V. Yugay
Kazakhstan
Vyachaslav V. Yugay
Karagandy
U. S. Esenzholov
Kazakhstan
Ulan S. Esenzholov
Karagandy
N. B. Kaliaskarov
Kazakhstan
Nurbol B. Kaliaskarov
Karagandy
References
1. Mekhtiyev AD, Eirikh VI, Yugai VV , et al. Mini–TETs i minielektrostantsii na osnove dvigatelya Stirlinga dlya energoobespecheniya zhilykh i promyshlennykh ob"ektov. Actual problems of modernity. 2014; 3(5):94-97
2. Garcia M ,Trujillo E, Godino J, et al. Thermodynamic Model for Performance Analysis of a Stirling Engine Prototype. Energies. 2018;11:10. doi:10.3390/en11102655 .
3. Zare S, Shourangiz‑Haghighi A, Tavakolpour‑Saleh A. Higher order modeling of a free-piston Stirlingengine: analysis and experiment. International journal of energy and environmental engineering. 2018;9(3):273-293. doi:10.1007/s40095-018-0267-7.
4. Athanasios A, Kolios J, Fidalgo B, et al. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system. Energy conversion and management. 2018;165:528540. doi:10.1016/j.enconman.2018.03.085.
5. Stamford L, Greening B, Azapagic A. Life cycle environmental and economic sustainability of Stirling engine micro-CHP systems. Energy technology. 2018;6(6):1119–1138. doi:10.1002/ente.201700854.
6. Egas J, Clucas D. Stirling Engine Configuration Selection. Energies. 2018;11(3). doi:10.3390/en11030584 .
7. Kaluzhskii D, Mekhtiyev A, Alkina A. Title of article. Optimization of the parameters of the synchronous motor for a specialhigh -speed electricdrive. 17th international conference of young specialists on micro/nanotechnologies and electron devic ES (EDM); 30 Jun -04Jul 2016; Novosibirsk: NSTU; 2016.
8. Kaluzhskii D, MakarovD, MekhtiyevA. Title of article. Inductor Motor with Axial Excitation Flux. 17th international conference of young specialists on micro/nanotechnologies and electron devices (EDM); 30 Jun-04Jul 2016; Novosibirsk: NSTU; 2016.
9. Sowale A, Anthony E, Kolios A. Optimisation of a Quasi-SteadyModel of a Free-Piston Stirling Engine. Energies. 2019;12(1). doi: 10.3390/en12010072.
10. Shalai VV. MakushevYuP. Dvigatel' vneshnego sgoraniya. Omskii nauchnyi vestnik. 2018; 1:110-114.
11. Volkov AV, Ryzhenkov AV, Parygin AG, et al. Matters Concerned with Development of Autonomous Cogeneration Energy Complexeson the Basis of Microhydropower Plants. Thermal Engineering. 2018 ;11:32-39.
12. Efendiev A.M, Nikolaev Yu.E, Evstaf'ev D.P.Vozmozhnosti energoobespecheniya fermerskikh khozyaistv na baze malykh vozobnovlyaemykh istochnikov energii. Thermal Engineering. 2016; 2:38-45.
13. Zynovyev EA, Dovgyallo AI. A simplified method of thermoacoustic engine analysis. Vestnik of samara university. AEROSPACE AND MECHANICAL ENGINEERING. 2012; 3(34):206 -2011.
14. Hamood A, Jaworski A.J , Mao X , et al. Design and construction of a two-stage thermoacoustic electricity generator with push-pulllinearalternator . Energy. 2018;144:61-72.
15. Wang K, Sun D, Zhang J, et al. An acoustically matched traveling-wave thermoacousticgenerator achieving 750 W electric power. Energy. 2016;103:313-321.
Review
For citations:
Mekhtiyev A.D., Al'kina A.D., Yugay V.V., Esenzholov U.S., Kaliaskarov N.B. Сomparative analysis and prospects of the use of multi -fuel micro-thermal power stations on the basis of the steeling engine for rural areas. Power engineering: research, equipment, technology. 2020;22(5):3-17. (In Russ.) https://doi.org/10.30724/1998-9903-2020-22-5-3-17