Preview

Power engineering: research, equipment, technology

Advanced search

Сomparative analysis and prospects of the use of multi -fuel micro-thermal power stations on the basis of the steeling engine for rural areas

https://doi.org/10.30724/1998-9903-2020-22-5-3-17

Abstract

THE PURPOSE. Conducting a comparative analysis of the problems of efficient power supply torural consumers. Offering solution stop roblems by using multi-fuelmicrothermal power plants based on the Stirlingengine for ruralareas. Justification and description of prospects for the use of multi-fuelmicro-thermal power plants based on the Stirlingengine for ruralareas. METHODS. Methods of computer simulation of thermodynamic processes of multi fuel micro-thermal power plants based on an engine based on an engine with external heat supply are used. A computer simulation method has been developed that allows constructing a PV diagram and processes of changes in the pressure and volume of the working fluid depending on the position of the working piston and the displacer. Mathematical methods of analysis and description of the thermodynamic cycle of an engine with external heat supply are used. RESULTS. Выполнен анализ достижений и уровня современных достижений в области микро электростанций. Установлено направление развития научных исследований по разработке двигателя с внешним подводом тепла. Приведены некоторые результаты исследований по эффективности работы двигателя с внешним подводом теплоты. CONCLUSIONS . Одним из решений проблемы эффективного электроснабжения сельских потребителей может быть внедрения микро тепловых электростанций. Их использование позволит снизить стоимость электроэнергии и обеспечить ее бесперебойную поставку. Основой микро тепловой электростанции является двигатель с внешним подводом теплоты, работающий по принципу Стирлинга.

About the Authors

A. D. Mekhtiyev
Karagandy State Technical University
Kazakhstan

Ali D. Mekhtiyev

Karagandy



A. D. Al'kina
Karagandy State Technical University
Kazakhstan

Aliya D. Al'kina

Karagandy



V. V. Yugay
Karagandy State Technical University
Kazakhstan

Vyachaslav V. Yugay

Karagandy



U. S. Esenzholov
Karagandy State Technical University
Kazakhstan

Ulan S. Esenzholov

Karagandy



N. B. Kaliaskarov
Karagandy State Technical University
Kazakhstan

Nurbol B. Kaliaskarov

Karagandy



References

1. Mekhtiyev AD, Eirikh VI, Yugai VV , et al. Mini–TETs i minielektrostantsii na osnove dvigatelya Stirlinga dlya energoobespecheniya zhilykh i promyshlennykh ob"ektov. Actual problems of modernity. 2014; 3(5):94-97

2. Garcia M ,Trujillo E, Godino J, et al. Thermodynamic Model for Performance Analysis of a Stirling Engine Prototype. Energies. 2018;11:10. doi:10.3390/en11102655 .

3. Zare S, Shourangiz‑Haghighi A, Tavakolpour‑Saleh A. Higher order modeling of a free-piston Stirlingengine: analysis and experiment. International journal of energy and environmental engineering. 2018;9(3):273-293. doi:10.1007/s40095-018-0267-7.

4. Athanasios A, Kolios J, Fidalgo B, et al. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system. Energy conversion and management. 2018;165:528540. doi:10.1016/j.enconman.2018.03.085.

5. Stamford L, Greening B, Azapagic A. Life cycle environmental and economic sustainability of Stirling engine micro-CHP systems. Energy technology. 2018;6(6):1119–1138. doi:10.1002/ente.201700854.

6. Egas J, Clucas D. Stirling Engine Configuration Selection. Energies. 2018;11(3). doi:10.3390/en11030584 .

7. Kaluzhskii D, Mekhtiyev A, Alkina A. Title of article. Optimization of the parameters of the synchronous motor for a specialhigh -speed electricdrive. 17th international conference of young specialists on micro/nanotechnologies and electron devic ES (EDM); 30 Jun -04Jul 2016; Novosibirsk: NSTU; 2016.

8. Kaluzhskii D, MakarovD, MekhtiyevA. Title of article. Inductor Motor with Axial Excitation Flux. 17th international conference of young specialists on micro/nanotechnologies and electron devices (EDM); 30 Jun-04Jul 2016; Novosibirsk: NSTU; 2016.

9. Sowale A, Anthony E, Kolios A. Optimisation of a Quasi-SteadyModel of a Free-Piston Stirling Engine. Energies. 2019;12(1). doi: 10.3390/en12010072.

10. Shalai VV. MakushevYuP. Dvigatel' vneshnego sgoraniya. Omskii nauchnyi vestnik. 2018; 1:110-114.

11. Volkov AV, Ryzhenkov AV, Parygin AG, et al. Matters Concerned with Development of Autonomous Cogeneration Energy Complexeson the Basis of Microhydropower Plants. Thermal Engineering. 2018 ;11:32-39.

12. Efendiev A.M, Nikolaev Yu.E, Evstaf'ev D.P.Vozmozhnosti energoobespecheniya fermerskikh khozyaistv na baze malykh vozobnovlyaemykh istochnikov energii. Thermal Engineering. 2016; 2:38-45.

13. Zynovyev EA, Dovgyallo AI. A simplified method of thermoacoustic engine analysis. Vestnik of samara university. AEROSPACE AND MECHANICAL ENGINEERING. 2012; 3(34):206 -2011.

14. Hamood A, Jaworski A.J , Mao X , et al. Design and construction of a two-stage thermoacoustic electricity generator with push-pulllinearalternator . Energy. 2018;144:61-72.

15. Wang K, Sun D, Zhang J, et al. An acoustically matched traveling-wave thermoacousticgenerator achieving 750 W electric power. Energy. 2016;103:313-321.


Review

For citations:


Mekhtiyev A.D., Al'kina A.D., Yugay V.V., Esenzholov U.S., Kaliaskarov N.B. Сomparative analysis and prospects of the use of multi -fuel micro-thermal power stations on the basis of the steeling engine for rural areas. Power engineering: research, equipment, technology. 2020;22(5):3-17. (In Russ.) https://doi.org/10.30724/1998-9903-2020-22-5-3-17

Views: 544


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)