Forecast of demand for the rmal energy for buildings of secondary educational institutions based on the properties of heteromorphism of their energy systems
https://doi.org/10.30724/1998-9903-2020-22-5-18-27
Abstract
Keywords
About the Author
S. V. GuzhovRussian Federation
Moscow
References
1. Strategiya tsifrovoy transformatsii v elektroenergetike. [Elektronnyy resurs]. Available at: URL: https://www.digital-energy.ru/activity/materials/strategy-for-digital-transformation-electric-power-industry/ Accessed to: May 20, 2020.
2. Informatsionnaya sistema energosberezheniya Departamenta zhilishchno -kommunal'nogo khozyaystva goroda Moskvy [Elektronnyy resurs]. Available at: URL: https://ise.mos.ru/ (data Accessed to: May 20, 2020.
3. Guzhov SV. Issledovaniye i prognozirovaniye kachestva funktsionirovaniya energosistem zdaniy dlya zanyatiy vodnymi vidami sporta pri raznoobraznykh vneshnikh vozdeystviyakh. Vestnik MEI. 2016;5: 88-93
4. Kosharnaya Yu.V. Metodika analiza parametrov elektropotrebleniya dlya normirovaniya i otsenki energosberezheniya pri provedenii energoaudita predpriyatii i organizatsii. Elektrooborudovanie: ekspluatatsiya i remont. 2016;4:56-69.
5. Voevoda AE, Kharitonova DD, Val' PV. Kratkosrochnoe prognozirovanie elektropotrebleniya na osnove metoda sluchainogo lesa. Elektroenergetika glazami molodezhi - 2016 Materialy 7 Mezhdunarodnoi molodezhnoi nauchno-tekhnicheskoi konferentsii. 2016. pp. 124-127.
6. Dong Q, Xing K, Zhang H. Artificial neural network for assessment of energy consumption and cost for cross laminated timber office building in severe cold regions. Sustainability. 2017;10(1):84.
7. Firsova IA, Vasbieva DG, Kosarenko NN, et al. Energy consumption forecasting for power supply companies. International Journal of Energy Economics and Policy. 2019;9(1):1-6.
8. Popov V, Fedosenko M, Tkachenko V, et al. Forecasting consumption of electrical energy using time series comprised of uncertain data. 2019 IEEE 6th International Conference on Energy Smart Systems, ESS 2019 - Proceedings 6. 2019. pp. 201-204.
9. Lemke F. Probabilistic energy forecasting based on self-organizing inductive modeling. Advances in Intelligent Systems and Computing. 2019;871:405-420.
10. Wang J, Zeng N, Zhou B, et al. Data center energy consumption models and energy efficient algorithms. Jisuanji Yanjiu yu Fazhan. 2019;56(8):1587-1603.
11. Jiang P, Dong J, Huang H. Forecasting china's renewable energy terminal power consumption based on empirical mode decomposition and an improved extreme learning machine optimized by a bacterial foraging algorithm. Energies. 2019;12(7):1331.
12. Runge J, Zmeureanu R. Forecasting energy use in buildings using artifici al neural networks: a review. Energies. 2019;12(17):3254.
13. Kudrin BI. Organizatsiya, postroyeniye i upravleniye energeticheskim khozyaystvom metallurgicheskikh predpriyatiy: Diss. … doktora tenkhicheskikh nauk. Gos. soyuznyy in-t po proyektirovaniyu metallurgicheskikh zavodov (GIPROMEZ). 1979. 282 s.
14. rp5.ru Raspisaniye pogody. Available at: elektronnyy resurs: https://rp5.ru/ Accessed to: May 20, 2020.
15. Zarubin O.A. Primeneniye neyronnykh setey dlya tseley analiza dannykh distantsionnogo zondirovaniya Zemli // Sovremennyye nauchnyye issledovaniya i innovatsii. 2016. N 8. Available at: URL: http://web.snauka.ru/issues/2016/08/70887. Accessed to: May 20, 2020.
Review
For citations:
Guzhov S.V. Forecast of demand for the rmal energy for buildings of secondary educational institutions based on the properties of heteromorphism of their energy systems. Power engineering: research, equipment, technology. 2020;22(5):18-27. (In Russ.) https://doi.org/10.30724/1998-9903-2020-22-5-18-27