Integrated research of slaging intensityof the boilerunit heating surfaceswhen burning non-project fuels
https://doi.org/10.30724/1998-9903-2020-22-6-101-116
Abstract
THE PURPOSE. Comprehensive research of the slagging intensity is the heating surfaces of the BKZ-420-140 boiler unit with solid slag removal at the Abakan CHP when burning non-project fuels. The relevance of the work is due to the technical necessity and economic feasibility of conversion boiler units to combustion of non-design coals. METHODS. The problem has been analyzed by methodology for conducting complex tests, measurements and processing of experimental data, as well as the results of experimental and computational studies of a boiler unit when operating on coals of various qualities. RESULTS. Qualitative and quantitative parameters for assessing the properties of off-design coals and their behavior in real operating conditions of radiation, semi-radiation and convective conditions, taking into account their modes and design functions, have been obtained. CONCLUSION: A computational analysis of the operating modes of boiler units when burning non-design fuels showed that a promising technology for involving non-design coals in the fuel and energy balance of a thermal power plant is providing a scientifically based mixture of design and nondesign fuels.Analysis of the slagging and polluting properties of non-design coals makes it possible to predict changes in the characteristics of the thermal efficiency of heating surfaces and to develop many practical recommendations for optimizing the parameters of the cleaning equipment installed on the boiler.Also, mixtures of fuels were determined for which the wall temperatures of the metal of the outlet stack of the superheater increase, which significantly reduces the strength characteristics of the surface.The assessment and prediction of the reliability of the heating surface is carried out by calculating the temperature of the metal wall in the most heat-stressed place.
About the Authors
E. A. BoikoRussian Federation
Evgenii A. Boiko
Krasnoyarsk
I. V. Zagorodnii
Russian Federation
Igor V. Zagorodnii
Krasnoyarsk
References
1. Kozhukhovskii IS, Aleshinskii RE, Govsievich E. R. Problemy i perspektivy ugol'noi generatsii Rossii. Ugol'. 2016;2:4-15.
2. Govsievich ER, Aleshinskii RE, Veksler FM. Brzhezyanskaya N.V. Tekhnikoekonomicheskie osobennosti ispol'zovaniya neproektnykh uglei na teplovykh elektrostantsiyakh. Promyshlennaya energetika, 2008, s. 15-20.
3. Koval' TV, Kudryashov AN. Otsenka shlakuyushchikh i zagryaznyayushchikh svoistv uglei, szhigaemykh na teplovykh elektrostantsiyakh PAO «Irkutskenergo». Vestnik irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2020;24(3):639-648.
4. Kuzmin VA, Zagrai IA, Desiatkov IA. Determination of peat ash fusibility of Kirov region deposits. Power engineering: research, equipment, technology. 2018;20(11-12):27-33.
5. Alekhnovich A.N. Kontrol' i prognozirovanie shlakuyushchikh svoistv uglei i shlakovaniya pyleugol'nykh kotlov. Bibliotechka elektrotekhnika. 2018;4:1-72.
6. Trembovlya VI, Finger EF, Avdeeva AA. Teplotekhnicheskie i spytaniya kotel'nykh ustanovok. M., Energiya, 1977.
7. Maidannik MN, Tugov AN, Vereshchetin VA. Otsenka tekhnicheskogo sostoyaniya kotel'nykh ustanovok po pokazatelyam kachestva. Teploenergetik. 2020;4:33-40.
8. Tugov AN, Maydannik MN. Heat-recovery steam generators at thermal power plants of Russia. Power Technology and Engineering. 2019;52(5):555-558.
9. Alekhnovich AN, Artem'eva NV. Vliyanie zol'nosti na shlakuyushchie svoistva uglei i shlakovanie pyleugol'nykh kotlov. Elektricheskie stantsii. 2017;3:8-15.
10. Alekhnovich AN. Ekspertnaya otsenka i prognozirovanie shlakuyushchikh svoistv uglei. Elektricheskie stantsii. 2015;8:7-17.
11. Boiko EA, Zhadovets EM, Yanov SR. Analiz teplovoi effektivnosti poluradiatsionnykh i konvektivnykh poverkhnostei nagreva pyleugol'nykh parovykh kotlov. Elektricheskie stantsii.2010;10:41-46
12. Teplovoi raschet kotlov (normativnyi metod). Izdanie 3-e, pererab.i dopolnennoe. SPb: NPO TsKTI. 1998. 256 s.
13. Tugov AN, Ryabov GA, Shtegman AV, et al. Opyt VTI po ispol'zovaniyu v energetike problemnykh topliv. Teploenergetika. 2016;7:3-11.
14. Zhang Y, Li Q, Zhou H.Theory and Calculation of Heat Transfer in Furnaces. Elsevier. 2016. 350 p.
15. Tong H, Zhang X, Tong Z, et al. Online Ash Fouling Prediction for Boiler Heating Surfaces based on Wavelet Analysis and Support Vector Regression. Energies. 2020,13(1):59:64-75.
16. Zhang S, Shen G, An L., et al. Ash fouling monitoring based on acoustic pyrometry in boiler furnaces. Appl. Therm. Eng. 2016;84:74-81
17. Trojan M, Taler D. Thermal simulation of superheaters taking into account the processes occurring on the side of the steam and flue gas. Fuel. 2015;150:75–87
18. Menn N, Chudnovskiy B. New technology for monitoring fouling deposition in coal fired boilers. VGB Powertech., 2016,6:65-70.
Review
For citations:
Boiko E.A., Zagorodnii I.V. Integrated research of slaging intensityof the boilerunit heating surfaceswhen burning non-project fuels. Power engineering: research, equipment, technology. 2020;22(6):101-116. (In Russ.) https://doi.org/10.30724/1998-9903-2020-22-6-101-116