Investigating the dearating hotwell working regimes of the PT-60-130/13 steam turbine
https://doi.org/10.30724/1998-9903-2020-22-6-155-163
Abstract
THE PURPOSE. To consider the problems of the increasing dissolved oxygen concentration in feedwater, especially after the condensate pumps. To estimate the opportunity of the vacuum thermic deaeration intensification inside the PT-60-130/13 LMZ steam turbine condenser to reduce the feedwater system rate of corrosion. Perform a thermal test of the external deaerating hotwell, which provides reducing dissolved oxygen concentration by the hot drains and recirculating feedwater. To evaluate the march of the dissolved oxygen concentration in feedwater after the inclusion of the deaerating hotwell. METHODS. The thermal test of the external deaerating hotwell was chosen for evaluating water deaeration. RESULTS. In this paper, the results of the thermal tests are given. The relation of the dissolved oxygen concentration from heating fluid flow is also presented. CONCLUSION. The use of the external deaerating hotwell allows achieving dissolved oxygen concentration below the norms established by the сode of operation for electrical power plants and grids to ensure the maintenance of an acceptable water-chemical regime of the feedwater. During the tests, the dissolved oxygen concentration decreased by 70% and reached a value of 8 mcg/dm3. The deaerating hotwell of the considered type can be recommended for the operation, especially during start-up modes and modes with the low thermal load on the condenser cooling surface.
About the Authors
A. D. VodeniktovRussian Federation
Artem D. Vodeniktov
Kazan
N. D. Chihirova
Russian Federation
Nataliya. D. Chihirova
Kazan
References
1. Mendeleev DI, Mar'in GE, Ahmetshin AR.. Pokazateli rezhimnyh harakteristik parogazovogo energobloka PGU-110 MVt na chastichnyh nagruzkah. Vestnik KGEU. 2019;3(43).
2. Aminov RZ, Garievsky MV. The efficiency of combined-cycle chp plant with variable electric loads, taking into account the wear and tear of equipment. Power engineering: research, equipment, technology. 2018;20(7-8):10-22. Available at: https://doi.org/10.30724/1998-9903-2018-20-7-8-10-22
3. Alabrudzinski S ,Markowski M. , Trafczynski M, et al. The Influence of Fouling Build-up in Condenser Tubes on Power Generated by a Condensing Turbine. Chemical Engineering Transactions. 2016;52:1225-1230. doi: 10.3303/CET1652205
4. Gap Park Y, Youl Yoon S, Min Seo Y, M. et al. A study on the optimal arrangement of tube bundle for the performance enhancement of a steam turbine surface condenser. Applied Thermal Engineering (2019). https://doi.org/10.1016/j.applthermaleng.2019.114681.
5. Wei W, Deliang Z, Jizhen L, et al. Feasibility analysis of changing turbine load in power plants using continuous condenser pressure adjustment. Energy. 2014;64:533-540. doi: 10.1016/j.energy.2013.11.001.
6. Medica-Viola V, Pavković B, Mrzljak V. (2018). Numerical model for on -condition monitoring of condenser in coal -fired power plants. International Journal of Hea t and Mass Transfer. 2018;117:912-923. doi: 10.1016/j.ijheatmasstransfer.
7. Anozie A.N., Odejobi O.J. The search for optimum condenser cooling water flow rate in a thermal power plant. Applied Thermal Engineering. 2011;31:4083-4090. doi: 10.1016/j.applthermaleng.2011.08.014.
8. SHklover GG. Issledovanie i raschet kondensacionnyh ustrojstv parovyh turbin. M.: Energoatomizdat, 1985. 240 p.
9. Hempelev AG, Iglin PV, Sushchih VM. Ocenka vliyaniya ekspluatacionnyh faktorov na soderzhanie kisloroda v kondensate na vyhode iz kondensatora parovoj turbiny. Problemy regional'noj energetiki. 2017;2(34):81-89.
10. Hempelev S.A.G., Iglin P.V. O prichinah povyshennogo soderzhaniya kisloroda v kondensate pri rabote kondensatora v blizkih k nominal'nym rezhima. Obshchestvo. Nauka. Innovacii (NPK-2017). Kirov: Vyatskij gosudarstvennyj universitet. 2017. p. 2385-2391.
11. Brodov YUM. Sovremennoe sostoyanie i tendencii v proektirovanii i ekspluatacii kondensatorov moshchnyh parovyh turbin TES i AES. Ekaterinburg: Izdatel'stvo Ural'skogo universiteta, 2019. 100 p.
12. Kerret Le., et al. A Case Study of the French Nuclear Power Industry Steam Surface Co ndenser Tubes Forty Years Later. EPRI Condenser Symposium. August 3 –4, 2011. Сhicago, Illinois. P. 10
13. Brodov YuM, Aronson KE, Ryabchikov AYu, et al. Povyshenie effektivnosti teploobmennyh apparatov paroturbinnyh ustanovok za schet primeneniya profil'nyh vityh trubok Izvestiya Vuzov. Problemy energetiki. 2016:7-8.
14. Deaeriruyushchij kondensatosbornik dlya turbin (DK EKOTEKH) URL: https://ecologytechnology.ru/katalog-oborudovaniya/dk-ecotech-dlja-turbin/ Accessed to: 21.12.2020.
15. Kirsh AK. Deaeraciya kondensata v kondensatorah parovyh turbin. M.: Byuro tekhnicheskoj informacii ORGRES, 1960. 28 p.
16. Vinogradov VN, Leduhovskij GV, Barochkin A.E, Prohorova E.A. Deaeracionnye ispytaniya kondensatora turbiny pri povyshennom soderzhanii svobodnoj uglekisloty v ostrom pare. Vestnik IGEU. 2009;2.
17. Vodeniktov AD, Chichirova ND. Influence of the temperature of the cooling water on the deaeration capacity in the KCS-200-2 condenser. Transactions of Academenergo. 2020;4 (61).
Review
For citations:
Vodeniktov A.D., Chihirova N.D. Investigating the dearating hotwell working regimes of the PT-60-130/13 steam turbine. Power engineering: research, equipment, technology. 2020;22(6):155-163. (In Russ.) https://doi.org/10.30724/1998-9903-2020-22-6-155-163