Preview

Power engineering: research, equipment, technology

Advanced search

Studying the thermal condition of an automated 6 (10) Kv electric power fiscal metering location

https://doi.org/10.30724/1998-9903-2021-23-1-182-196

Abstract

THE PURPOSE. Examine the problem of reliable functioning of small electric power fiscal metering locations (EPFML) based on unconventional instrument current and voltage converters (Rogowski coil and resistive divider). Identify the most severe environmental conditions in which EPFML can be operated. Conduct research into EPFML thermal condition in different grid operation modes, and also during high voltage testing. Determine the conditions in which heat emission at the resistor divider attains its maximum value. METHODS. To solve the problem, use was made of three-dimensional hybrid field and chain simulation models, calculated by the methods of finite elements and linear electric circuit theory. The developed simulation models enable research to be conducted not only in normal, but also emergency electric grid operation, during lightning and pulse surges, insulation testing, and in the presence of insolation. RESULTS. The article presents the results of research concerning the thermal condition of a 6 (10) kV automated electric power fiscal metering location. CONCLUSION. If a resistive divider is used as a primary voltage converter, maximum heat emission occurs in the event of intermittent single phase arc faults to earth in accordance with Petersen’s theory. The results of the conducted research show that an EPFML based on a resistive voltage divider should be calculated using simulated models, taking into account insolation and the daily pattern of changes in maximum ambient temperature.

About the Authors

E. E. Gotovkina
Ivanovo State Power Engineering University
Russian Federation

Elena E. Gotovkina

Ivanovo



A. A. Yablokov
Ivanovo State Power Engineering University; Research and Production Association "Digital Measurement Transformers"
Russian Federation

Andrey A. Yablokov

Ivanovo



N. N. Smirnov
Ivanovo State Power Engineering University
Russian Federation

Nikolay N. Smirnov

Ivanovo



A. V. Panashatenko
Research and Production Association "Digital Measurement Transformers"
Russian Federation

Anton V. Panashatenko

Ivanovo



V. D. Lebedev
Ivanovo State Power Engineering University; Research and Production Association "Digital Measurement Transformers"
Russian Federation

Vladimir D. Lebedev

Ivanovo



O. A. Dobryagina
Ivanovo State Power Engineering University
Russian Federation

Olga A. Dobryagina

Ivanovo



References

1. Osnovnye polozheniya kontseptsii intellektual'noi energosistemy s aktivno-adaptivnoi set'yu, Moscow, 2012. Available at: https:// www.fsk-ees.ru/upload/docs/ies_aas. Accessed to: 22 Oct 2020.

2. Kontseptsiya "Tsifrovaya transformatsiya 2030”, Moscow, 2018. Available at: https://www.rosseti.ru/Kontseptsiya_Tsifrovaya_transformatsiya_2030. Accessed to: 22 Oct 2020.

3. Colak I, Bayindir R, Sagiroglu S. The Effects of the Smart Grid System on the National Grids. icSmartGrid: Proceedings of the conference 8th International Conference on Smart Grid; 17-19 June 2020; Paris, France; 2020. doi: 10.1109/icSmartGrid49881.2020.9144891

4. Agalgaonkar YP, Hammerstrom DJ. Evaluation of Smart Grid Technologies Employed for System Reliability Improvement: Pacific Northwest Smart Grid Demonstration Experience. IEEE Power and Energy Technology Systems Journal. 2017;4(2):24-31. doi: 10.1109/JPETS.2017.2683502

5. Bansal P, Singh A. Smart metering in smart grid framework. A review. PDGC: Proceedings of the conference Fourth International Conference on Parallel, Distributed and Grid Computing; 22-24 Dec. 2016; Waknaghat, India; 2017. doi: 10.1109/PDGC.2016.7913139

6. Gracheva EI, Sadykov RR, Khusnutdinov RR, et al. Investigation of the parameters of reliability of low voltage commutation devices on operating data of industrial enterprises. Proceedings of the higher educational institutions. Energy sector problems. 2019;21:1-2:10-18. doi:10.30724/1998-9903-2019-21-1-2-10-18.

7. Vasev AN, Misbakhov RSh, Ziganshina AI, et al. Combine communications optical network of scada of electric power station and substation. Proceedings of the higher educational institutions. Energy sector problems. 2018;20(11):16-26. doi:10.30724/1998-9903-2018-20-11-12-16-26.

8. Agalgaonkar Yashodhan P, Hammerstrom Donald J. Evaluation of Smart Grid Technologies Employed for System Reliability Improvement: Pacific Northwest Smart Grid Demonstration Experience. IEEE Power and Energy Technology Systems Journal. 2017;4(2):24-31.

9. Li Zhe, Dai Y, Wang Q, et al. Application of High-Voltage Electrical Energy Meter in Smart Grid. ICMCCE: Proceedings of the 3rd International Conference on Mechanical, Control and Computer Engineering; 14-16 Sept. 2018; Huhhot, China; 2018. doi: 10.1109/ICMCCE.2018.00028.

10. Zhang A, Song S., Wang Ch, et al. Research of an integrated high-voltage energy metering device. Proceedings of the 36th Chinese Control Conference; 26-28 July 2017; Dalian, China; 2017. doi: 10.23919/ChiCC.2017.8028551.

11. Gebauer J, Podešva P, Fojtík D, et al. The Welding Current and Voltage Smart Sensor. ICCC: Proceedings of the conference 20th International Carpathian Control Conference; 26-29 May 2019; Krakow-Wieliczka, Poland; 2019. doi: 10.1109/CarpathianCC.2019.8766018.

12. Al-Aomari O, Vankov JV, Kostyleva EE, et al. Method of treatment results thermal imaging inspection of high voltage equipment. Power engineering: research, equipment, technology. 2015;11-12:80-86. doi: 10.30724/1998-9903-2015-0-11-12-80-86

13. Dmitriev AV, Valiev II, Dmitrieva OS. The study of thermoelectric converter in the cooling system of the power equipment. Power engineering: research, equipment, technology. 2015;11-12:60-63. doi: 10.30724/1998-9903-2015-0-11-12-60-63.

14. Pengbo Yin, Zuoming Xu, Wei Hu, et al. Temperature Homogenization Technology of Current Carrying Conductor in the Valve Side Bushing of Converter Transformer Based on the Heat Pipe Theory. ICHVE: Proceedings of the IEEE International Conference on High Voltage Engineering and Application; 6-10 Sept. 2020; Beijing, China; 2020.

15. Xiaoling Yu, Zhiyuan Liu, Quanke Feng, et al. Research on a gravity heat pipe for high voltage vacuum interrupter. Proceedings of the 23rd International Symposium on Discharges and Electrical Insulation in Vacuum; 15-19 Sept. 2008; Bucharest, Romania; 2008.

16. Blumenfeld PE, Prenger C, et al. High temperature superconducting current lead test facility with heat pipe intercepts. IEEE Transactions on Applied Superconductivity. 1999;9(2):527-530.

17. Kang B, Hou T, Bu Z, et al. High-voltage electrical energy meter with measurement chips floating at 10 kV potentials. IET Science, Measurement & Technology. 2016;10(3):159-166. doi: 10.1049/iet-smt.2014.0280.

18. Xin Y, Mingshuai Ch, Xinyang Li, et al. Research of three-phase high-voltage energy metering device. CAC: Proceedings of the conference Chinese Automation Congress; 20-22 Oct. 2017; Jinan, China; 2018. doi: 10.1109/CAC.2017.8243828

19. ZHuravlev AA. Vysokovol'tnyj rezistivnyj delitel' na baze litogo mikroprovoda v steklyannoj izolyacii na rabochie napryazheniya 6-24 kV peremennogo toka promyshlennoj chastity. A.A. ZHuravlev, M.L. SHit, YU.I. Kolpaklvichb D.I. Kozhokaru, V.G. Klejmenov. Problemy regional'noj energetiki. 2008;3:104-117.

20. Denicolai M., Hällström J. A Self-balanced, Liquid Resistive, High Impedance HV Divider. Proceedings of the XIVth International Symposium on High Voltage Engineering; 25-

21. August 2005; Tsinghua University, Beijing, China; 2005. Paper J-05. Available at: http://www.saunalahti.fi/dncmrc1/wprobe/wprobe.pdf. Accessed to: 23 Oct 2020.

22. Yongdong Li, Qing-da Meng, Po, Yang Zheyuan Zhao, et al. Analysis on the Influence Factors of Capacitor Voltage Transformer Dielectric Loss Measurement. Energy and Power Engineering. 2013;5:1240-1242.

23. Vorob'eva EA. Sovershenstvovanie printsipov vypolneniya adaptivnykh tokovykh i admitansnykh zashchit ot zamykanii na zemlyu v kabel'nykh setyakh 6-10 kV. Ivanovo; 2018. Available at: http://ispu.ru/files/Avtoreferat_Vorobea_E.A. pdf. Accessed: 23 Oct 2020.

24. Petersen W. Der aussetzende (intermittierende) Erdschluss. ETZ. 1917. H. 37, 38.

25. Peters IE. Voltage Induced by Arcing Ground. Tr. AIEE. 1923. P. 478.

26. Belyakov NN. Investigation of overvoltage at arc earth faults in 6 and 10 kV networks with isolated neutral. Electricity, 1957;5:31-36.

27. Pyzhov V.K., Smirnov N.N. Sistemy konditsionirovaniya, ventilyatsii i otopleniya. Moskva, Vologda: Infra-Inzheneriya, 2019. P. 528.

28. Pogosyan Kh.P. Vozdushnaya obolochka zemli. Leningrad: Gidrometeorologicheskoe izdatel'stvo, 1962. P. 291.

29. Shul'gin A.M. Klimat pochvy i ego regulirovanie. Leningrad: Gidrometeorologicheskoe izdatel'stvo, 1967. P. 302.

30. Goryunov V. Odnofaznoe zamykanie na zemlyu. Mozhno li reshit' problemu? Novosti elektrotekhniki. 2017. № 2 (104). Available at: http://www.news.elteh.ru/arh/2017/104/04.php. Accessed to: 22 Oct 2020.

31. Shuin V.A. Zashchity ot zamykanii na zemlyu v elektricheskikh setyakh 6–10 kV. M: NTF «Energoprogress», 2001. P. 104.


Review

For citations:


Gotovkina E.E., Yablokov A.A., Smirnov N.N., Panashatenko A.V., Lebedev V.D., Dobryagina O.A. Studying the thermal condition of an automated 6 (10) Kv electric power fiscal metering location. Power engineering: research, equipment, technology. 2021;23(1):182-196. (In Russ.) https://doi.org/10.30724/1998-9903-2021-23-1-182-196

Views: 273


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)