Preview

Power engineering: research, equipment, technology

Advanced search

The usage of probabilistic assessment for cost calculations of using NPP with hydrogen industrial production

https://doi.org/10.30724/1998-9903-2021-23-2-14-26

Abstract

THE PURPOSE. This study focused on the probability of construction of dual – purpose nuclear-hydrogen unit for cogeneration of hydrogen and electricity with nuclear power reactor VVER-1200 based on AES-2006 project. METHODS. The aim of the study is the probation of the IAEA calculation method originated for sea water desalination unit using nuclear power plant as an energy source, but with a view to same time production of high-quality hydrogen and electricity concerning the ecological issues of hydrogen generation. In particular, the method was used for probabilistic assessment of single-purpose NPP unit and dual-purpose nuclear-hydrogen unit. The supposed result of the study was construction of special building for the electrolytic process purposes. The ground location of the building was out of the main building area. The special building should consist of electrolytic units, technological water feed and removal pipelines, tanks for hydrogen and other service equipment. RESULTS. The paper introduced the theoretical possibility of hydrogen production on the rate up to 1,927∙108 m3/year in the case of full-time basis operation of 50 hydrogen units. The rate of produced hydrogen corresponds to 18,53% of inner Russian market hydrogen needs. In this case the electricity cost factor was 0,097 $/kW∙hr, the cost factor of higher quality hydrogen was 0,956 $/m3. The paper introduced the prime cost comparison of produced hydrogen according to hydrogen units total capacity and arrangement demands. CONCLUSION. This method has the limits of applicability, but in our case, it can be used to calculate key economic factors of the project and to analyze the validation of the energy source and the hydrogen unit size.

About the Authors

Yu. A. Kolbantcev
Peter the Great St. Petersburg Polytechnic University; JSC «ATOMPROEKT»
Russian Federation

Yury A. Kolbantsev

St. Petersburg



M. V. Konyushin
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Maxim V. Konyushin

St. Petersburg



A. A. Kalyutik
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Alexandr A. Kalyutik

St. Petersburg



References

1. Vodorodnye energeticheskie tekhnologii: Materialy seminara laboratorii VET OIVT RAN: sb. nauch. tr. redkol.: D.O. Dunikov otv. red. M.: OIVT RAN. 2017;1:190.

2. The future of Hydrogen. Seizing today’s opportunities. IEA Report for the G20, Japan. 2019. 203 p.

3. Opportunities for Australia from Hydrogen Exports. ACIL Allen Consulting for ARENA. 2018. 114 p.

4. Solodova NL, Minugulov RR, Emel'yanycheva EA. Vodorod kak perspektivnyi energonositel'. Sovremennye metody polucheniya vodoroda. Vestnik KSPEU. 2015;18(3).

5. Solodova NL, Cherkasova EI, Salakhov II, VP. Tutubalina. Vodorod – energonositel' i reagent. Tekhnologii ego polucheniya. Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki. 2017;19(11-12).

6. Astanovskii DL, Astanovskii LZ, Kustov PV. Energosberegayushchee, ekologicheski chistoe poluchenie vodoroda iz uglevodorodnogo syr'ya. Khimicheskie tekhnologii i produkty. 2016;3(10-16).

7. Marchenko OV, Solomin SV. Analiz effektivnosti akkumulirovaniya elektricheskoi energii i vodoroda v energosistemakh s vozobnovlyaemymi istochnikami energii. Vestnik IrGTU. 2018;22:183-193.

8. Aminov RZ, Bairamov AN. Otsenka effektivnosti polucheniya vodoroda na baze vnepikovoi elektroenergii AES. Mezhdunarodnyi nauchnyi zhurnal Al'ternativnaya energetika i ekologiya. 2016; 05-06:(193-194).

9. Aminov RZ, Bairamov AN, Garievskii M.V. Otsenka sistemnoi effektivnosti atomnovodorodnogo energeticheskogo kompleksa. Teploenergetika. 2019;3:57-71;

10. Aminov R.Z., Portyankin A.V. Analiz komponovochnykh reshenii elektroliznogo tsekha vodorodnoi nadstroiki s uchetom nadezhnosti i vzryvopozharoopasnosti. Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki. 2018;20(5-6):29-36.

11. Kulikov S. Pervyi khochet stat' glavnym. Ekspert. 2019;48:46-52.

12. Mitrova T, Mel'nikov Yu, Chugunov D. Vodorodnaya ekonomika – put' k nizkouglerodnomu budushchemu. Tsentr energetiki Moskovskoi shkoly upravleniya SKOLKOVO. 2019. 63p.

13. Grib N. Vodorodnaya energetika: mify i real'nost'. Analiticheskii zhurnal Neftegazovaya vertikal'. 20193;19:61-69.

14. Kolbantsev YuA., Konyushin MV. Perspektivy ispol'zovaniya atomnoi energii dlya promyshlennogo proizvodstva vodoroda. Sovremennye tekhnologii i ekonomika v energetike (MTEE-2020). Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii. 2020. pp. 76-78.

15. Filimonova A.A., Chichirov A.A., Chichirova N.D., et al. Perspectivy razvitiya vodorodnoy energetiki v Tatarstane. Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki. 2020;22(6):79-91.

16. Petrushenko YuYa, Brusov VA, Agafonov YuM., et al. K voprosy polychenia atomarnogo vodoroda i vozmoznosti ego primeneniya v energetike. Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki. 2011;11-12:170-177.

17. Kavvadias KC, Khamis I. Sensitivity analysis and probabilistic assessment of seawater desalination costs fueled by nuclear and fossil fuel. Energy Policy. 2014;74:24-30.

18. Kavvadias K, Khamis I. 2010. The IAEA DEEP desalination economic model: a critical review. Desalination. 257(1-3):150–157.

19. YDu, Parsons J.E. Update on the Cost of Nuclear Power. Center for Energy and Environmental Policy Research. MIT. 2009.


Review

For citations:


Kolbantcev Yu.A., Konyushin M.V., Kalyutik A.A. The usage of probabilistic assessment for cost calculations of using NPP with hydrogen industrial production. Power engineering: research, equipment, technology. 2021;23(2):14-26. (In Russ.) https://doi.org/10.30724/1998-9903-2021-23-2-14-26

Views: 554


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)