Preview

Power engineering: research, equipment, technology

Advanced search

Estimation of the efficiency of combining a npp with a hydrogen facility under conditions of safe use of hydrogen in a steam turbine cycle

https://doi.org/10.30724/1998-9903-2021-23-2-56-69

Abstract

THE PURPOSE. System efficiency and competitiveness assess of a new scheme for combining a nuclear power plant with a hydrogen complex based on additional heating of feed water and superheating of live steam in front of the high-pressure cylinder of a steam turbine. METHODS. Basic laws of thermodynamics were applied when developing and substantiating a new scheme for combining a nuclear power plants (NPP) with a hydrogen facility; theoretical regularities were applied of heat engineering; basic regularity were applied of fatigue wear of power equipment and assessment of its working resourse; basic regularities were applied for the assessment of operating costs and net present value (NPV). RESULTS. A new scheme is presented of the combination of a nuclear power plant with a hydrogen facility and a description of its operating principle on the example of a two-circuit nuclear power plant with a VVER-1000 reactor and a C-1000-60 / 1500 turbine. The data are presented on an increase in the productivity of steam generators at nuclear power plants with additional heating of feed water in the range of 235-250 ° C from its nominal value of 230 ° C. The temperature was estimated of live steam superheat depending on the temperature of the additional heating of the feed water. The results are presented of the calculation of the generated peak power by the power unit and the efficiency of conversion of the night off-peak power of the NPP into peak power, as well as the efficiency of the power unit of the NPP depending on the temperature of additional heating of the feed water. Main regularities are given for taking into account the fatigue wear of the main equipment of the hydrogen facility, including the rotor of the NPP turbine in the conditions of the stress-cyclic operation. The results are presented of assessing the cost of peak electricity NPP in combination with a hydrogen facility in comparison with a pumped storage power plant (PSPP) both for the current period and for the future until 2035. CONCLUSION. Hydrogen facility efficiency and competitiveness depends significantly on the intensity of the use of the main equipment in the conditions of the intense-cyclic operation. The hydrogen facility will competitiveness noticeably increase in comparison with the PSPP in the future. Efficiency of the NPP power unit and NPV is highest when the feed water is heated to 235 ° C and superheating of live steam in front of the high-pressure cylinder of the C-1000-60/1500 turbine up to 470°C.The hydrogen facility competes with the PSPP with her specific capital investment at the level of 660 USD / kW, provided that the boosting capabilities of the turbine are used with live steam overheating at 300 ° C and additional heating of feed water to 235°C on the current period. The PSPP does not compete with the hydrogen facility both for the current period and in the future with her specific capital investment of $ 1,500 / kW and above.

About the Authors

R. Z. Aminov
Saratov Scientific Center RAS Department of Energy Problems
Russian Federation

Aminov Rashid Zarifovich

Saratov



A. N. Bairamov
Saratov Scientific Center RAS Department of Energy Problems
Russian Federation

Bairamov Artem Nikolaevich

Saratov



References

1. Energeticheskaya strategiya Rossii na period do 2035g. Pravitel'stvo Rossijskoj federacii. Moskva. 2020.79p.

2. Golovin RA. Strategiya deyatel'nosti Goskorporacii «Rosatom». M.:2018.

3. Aminov RZ, Bajramov AN. Kombinirovanie vodorodnyh energeticheskih ciklov s atomnymi elektrostanciyami. M.: Nauka, 2016. 254p.

4. Aminov RZ, Yurin VE, Egorov AN. Kombinirovanie AES s mnogofunkcional'nymi energeticheskimi ustanovkami. M.: Nauka. 2018. 238p.

5. Bajramov AN, Kirichkov VS. Obosnovanie komponovochnyh reshenij kombinirovaniya AES s vodorodnym energeticheskim kompleksom po kriteriyu minimal'nogo riska. Trudy Akademenergo. 2018;1:57-71.

6. Aminov RZ, Bajramov AN. Sistema szhiganiya vodoroda dlya paro-vodorodnogo peregreva svezhego para v cikle atomnoj elektricheskoj stancii. Patent RF №2427048. 20.08.2011, Byul. № 23. Dostupno po: https://new.fips.ru/registers-doc-view/fips_servlet. Ssylka aktivna na 12 yanvarya 2021.

7. Aminov RZ, Schastlivcev, Bajramov AN. Eksperimental'naya ocenka doli neproreagirovavshego vodoroda pri szhiganii v srede kisloroda. International Scientific Journal for Alternative Energy and Ecology. 2020;7-18(330-341):68-79.

8. Aminov RZ, Schastlivtsev AI and Bayramov AN. Experimental Evaluation of the Composition of the Steam Generated during Hydrogen Combustion in Oxygen. High Temperature. 2020;58(3):410-416. doi: 10.1134/S0018151X20030013.

9. Aminov RZ, Bajramov AN, Egorov AN. Turbinnaya ustanovka atomnoj elektrostancii (varianty). Patent RF № 2459293. 20.08.2012, Byul. № 23. Dostupno po: https://new.fips.ru/registers-doc-view/fips_servlet. Ssylka aktivna na 12 yanvarya 2021.

10. Aminov RZ, Egorov AN. Razrabotka differencial'nyh uravnenij vyrabotki energii pri dopolnitel'nom podvode tepla vo vlazhno-parovyh ciklah AES. Vestnik SGTU. 2011;1(54):18–25.

11. Egorov AN, Yurin VE. Sravnitel'naya ocenka effektivnosti AES s ispol'zovaniem satellitnoj turbiny. Vestnik SGTU. 2012;4:145–149.

12. Aminov RZ, Egorov AN. Metodika ocenki termodinamicheskoj effektivnosti dopolnitel'nogo podvoda tepla vo vlazhno-parovyh ciklah AES. Izvestiya vysshih uchebnyh zavedenij. Problemy energetiki. 2011;11–12:20–29.

13. Aminov RZ, Egorov AN, Yurin VE. Rezervirovanie sobstvennyh nuzhd AES v usloviyah polnogo obestochivaniya na osnove vodorodnogo cikla. Atomnaya energiya. 2013;4 (114):234-236.

14. Bairamov AN. Evaluation of the operating resource of the most loaded rotor element of the additional steam turbine with steam-hydrogen overheat of the working fluid at a nuclear power station. Journal of Physics: Conference Series. 2017;891:012252:1-9. doi :10.1088/1742-6596/891/1/012252.

15. Bajramov AN, Aminov RZ. Sistema bezopasnogo ispol'zovaniya vodoroda pri povyshenii moshchnosti AES vyshe nominal'noj. Patent RF № 2736603. Opubl. 19.11.2020. Byul. № 32. Dostupno po: https://new.fips.ru/registers-doc-view/fips_servlet. Ssylka aktivna na 12 yanvarya 2021.

16. Tarasov OV, Kiselev AE, Filippov AS. I dr. Razrabotka i verifikaciya modeli rekombinatorov RVK-500, -1000 dlya modelirovaniya zashchitnoj obolochki AES s VVER metodami vychislitel'noj gidrodinamiki. Atomnaya energiya. 2016;3(121):131-136.

17. Aminov RZ, Bajramov AN. Ocenka sistemnoj effektivnosti vodorodnogo kompleksa na osnove zamknutogo vodorodnogo cikla. International Scientific Journal for Alternative Energy and Ecology. 2019;22-27:42-52.

18. Vargaftik N.B. Spravochnik po teplofizicheskim svojstvam gazov i zhidkostej / Vargaftik N.B. M.: Nauka, 1972.

19. Bajramov AN. Sistemnyj analiz napryazhyonno-ciklicheskogo rezhima raboty osnovnogo oborudovaniya vodorodnogo energeticheskogo kompleksa v kombinirovanii s AES. Trudy akademenergo. 2017;1:71-96.

20. Bairamov AN. Life cycle assessment of hydrogen energy facility by criterion for maximum load frequency. International Journal of Hydrogen Energy. 2019:5696-5703. https://doi.org/10.1016/j.ijhydene.2019.01.008.

21. Bairamov AN. Efficiency Assessment of Hydrogen Production Systems under Fatigue Wear Conditions. Journal of Physics: Conference Series. 2020;1683. 042009. doi:10.1088/1742-6596/1683/4/042009.

22. Mekhanika razrusheniya i prochnost' materialov: spravochnoe posobie. Pod obshch.red. VV. Panasyuka. Kiev: Nauk. dumka, 1990;4:680.

23. Mashinostroenie: enciklopediya po mashinostroeniyu. Red. sovet: K.V.Frolov i dr.T.II-1. M.:Mashinostroenie, 2010. 852p.

24. Kogaev VP, Mahutov NA, Guseknov AP. Raschety detalej mashin i konstrukcij na prochnost' i dolgovechnost'. M.: Mashinostroenie, 1985. 223p

25. Pavlov PA. Osnovy inzhenernyh raschetov elementov mashin na ustalost' i dlitel'nuyu prochnost'. L.:1988, 252p.

26. Troshchenko VT, Pokrovskij VV, Prokopenko AV. Treshchinostojkost' metallov pri ciklicheskom nagruzhenii. Kiev: Naukova dumka, 1987. 256p.

27. Cherepanov GP. Mekhanika hrupkogo razrusheniya. M.: Nauka, 1974. 640p.

28. Lashchinskij AA, Tolchinskij AR. Osnovy konstruirovaniya i rascheta himicheskoj apparatury. Pod redakciej Loginova NN. L.: Mashinostroenie, 1970. 752p.

29. Kostyuk AG. Dinamika i prochnost' turbomashin. 3-e izd. pererab. i dop. M.: Izdatel'skij dom MEI, 2007. 476p.

30. Aminov RZ, Bajramov AN, Garievskij MV. Ocenka sistemnoj effektivnosti atomnovodorodnogo energeticheskogo kompleksa. Thermal Engineering. 2019;3:57-71.

31. Aminov RZ, Shkret AF, Garievskij MV. Teplovye i atomnye elektrostancii: konkurentosposobnost' v novyh ekonomicheskih usloviyah. Thermal Engineering. 201;5:5–15.

32. Makarov AA, Veselov FV, Makarova AS. i dr. Strategicheskie perspektivy elektroenergetiki Rossii. Thermal Engineering. 2017;11:40-52.


Review

For citations:


Aminov R.Z., Bairamov A.N. Estimation of the efficiency of combining a npp with a hydrogen facility under conditions of safe use of hydrogen in a steam turbine cycle. Power engineering: research, equipment, technology. 2021;23(2):56-69. (In Russ.) https://doi.org/10.30724/1998-9903-2021-23-2-56-69

Views: 451


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)