Preview

Power engineering: research, equipment, technology

Advanced search

Methods of ensuring the operational stability of dc-dc power supply in arctic conditions

https://doi.org/10.30724/1998-9903-2021-23-4-166-179

Abstract

THE PURPOSE. To consider the features of development and exploitation of DC-DC power supplies for Arctic conditions, to show the key problems and existing methods of solving them, to identify prospective directions in the design of this type of devices.

METODS. The work is mainly an over-view with the questions of construction, circuit design, control principles, maintaining thermal equilibrium, choosing of electric elements and miniaturization. The first part of the article is devoted to the review of scientific publications and patents, in the second part the idea of using a parallel architecture in frost-resistant power supplies is considered, giving an opportunity to adapt modular principle of device construction.

RESULTS. The article examines the issues of adapting the modular approach to the specifics of frost-resistant power supplies. In this way you can build a self-healing, configurable, easy-to-repair power supply of wide application. With modular construction principle the entire electrical complex consists of parallel-connected cells, placed in one hermetic and heated case (a case with connectors on the surface, as well as the control and display units).

CONCLUSION. Parallel connection of the cells allows to provide a significant power reserve in the power supply, to perform a quick replacement of faulty modules without interrupting the power supply process, to increase/reduce the system power easily by changing the number of working cells. The system acquires special advantages, if the output voltage levels of the cells are adjustable. In this case, it is possible to build a universal configurable power supply of wide application, which is a novelty on the market. If you group the cells on the output, you can use one power supply for several different consumers. The spare parts for the power supply are as simple as possible and consists of ready-made cells and connecting wires. The obtained results can be used in development of fault-tolerant secondary DC-DC power supplies for hard operating conditions.

About the Authors

V. A. Shpenst
Saint-Petersburg Mining University
Russian Federation

Vadim A. Shpenst

Saint-Petersburg



E. A. Orel
Saint-Petersburg Mining University
Russian Federation

Evgeniy A. Orel

Saint-Petersburg 



References

1. Gendler SG. Teplofizicheskie aspekty bezopasnosti i effektivnosti pri dobyche poleznykh iskopaemykh i ekspluatatsii podzemnykh sooruzhenii v surovykh klimaticheskikh usloviyakh. Zapiski Gornogo instituta. 2006; 168: 64-67.

2. Cherepovitsyn AE, Larichkin FD, Il'inova AA, et al. Formirovanie kontseptsii ratsional'nogo prirodopol'zovaniya na arkticheskikh territoriyakh, sposobstvuyushchei ikh ustoichivomu promyshlennomu i sotsial'no-ekonomicheskomu razvitiyu. Voprosy territorial'nogo razvitiya. 2018; 5(45): 1-17.

3. Shklyarskii YaE, Zamyatina EN, Zamyatin EO. Otsenka energeticheskoi effektivnosti elektrotekhnicheskogo kompleksa. Izvestiya TulGU. Tekhnicheskie nauki. 2020; 3: 339-347.

4. Lebedev VA, Leusheva EL, Morenov VA. Kompleksnoe energosnabzhenie pri burenii skvazhin v oslozhnennykh klimaticheskikh usloviyakh. Zapiski Gornogo Instituta. 2015; 213:47- 53.

5. Lavrik AYu, Zhukovskii YuL, Buldysko AD. Osobennosti vybora optimal'nogo sostava vetro-solnechnoi elektrostantsii s dizel'nymi generatorami. Izvestiya vysshikh uchebnykh zavedenii. PROBLEMY ENERGETIKI. 2020; 22 (1): 10-17.

6. Petrunin AM, Semenov AS, Molodykh SS. Analiz perspektiv razrabotki ugol'nykh mestorozhdenii v arkticheskoi zone Chukotskoi avtonomnoi oblasti. Moskovskii ekonomicheskii zhurnal. 2020;8:74-85.

7. Abramovich BN, Bel'skii AA. Vybor parametrov vetrodizel'noi ustanovki dlya energoobespecheniya mineral'no-syr'evogo kompleksa. Zapiski gornogo instituta. 2012; 195: 227- 230.

8. Glushchenko MA. Vetroenergeticheskie ustanovki. Zapiski Gornogo Instituta. 2007; 170: 156-158.

9. Shklyarskii YaE, Salov RA. Povyshenie effektivnosti raboty energeticheskikh tsentrov na poputnom gaze. Izvestiya TulGU. Tekhnicheskie nauki. 2017;12-2:484-492.

10. Apollonskii SM, Kuklev YuV. Nizkovol'tnye elektricheskie apparaty. Zapiski Gornogo Instituta. 2016;218:251-260.

11. Emashkina TS, Belov AG, Kochegarov II. Klassifikatsionnye priznaki istochnikov elektropitaniya. Trudy mezhdunarodnogo simpoziuma «Nadezhnost' i kachestvo». 2014; 2: 15-16.

12. Amaral A, Cardoso AJM. Voltage Doubler for AC-DC Step-Up Linear Power Supplies: Design, Modelling and Simulation. Acta Electrotechnica et Informatica. 2016; 6: 3-10.

13. Bespalov NN, Pen'kin KYu. Optimizatsiya velichin nekotorykh parametrov lineinykh istochnikov pitaniya na osnove stabilizatorov napryazheniya. Ogarev-Online. 2018; 13: 1-5.

14. Nguyen CK, Kashaev RS, Kozelkov OV. The impulse power unit for a portable proton magnet resonance relaxometer. Power engineering: research, equipment, technology. 2019; 21(6):111-117.

15. Fuerback VB, Dall’Asta MS, Pagliosa MA. et al. Analysis of modular DCM Flyback converters in input parallel con-nections with parametric mismatches. Eletrônica de Potência. 2019; 24: 225-234.

16. Ivanov DN. Puti razvitiya istochnikov elektropitaniya sovremennyh radiotekhnicheskih system. Aktual'nye voprosy sovremennoj nauki. 2016; 45: 134-139.

17. Volodin PN. Razrabotka makromodeli intensivnosti otkazov impul'snogo IVEP. Trudy mezhdunarodnogo simpoziuma «Nadezhnost' i kachestvo». 2017;1:251-254.

18. Popov AV. Issledovanie i sovershenstvovanie metodov rascheta nadezhnosti elementov elektrotekhnicheskih kompleksov i sistem. Izvestiya vysshih uchebnyh zavedenij. PROBLEMY ENERGETIKI. 2015; 3-4: 114-123.

19. Ridley R. Results of a Power Supply Failure Survey. Power Systems Design. 2014: 1–4.

20. Edmundo A. Gutierrez, Jamal Deen, Cor Claeys. Low Temperature Electronics: Physics, Devices, Circuits, and Applications. Available at: https://books.google.com.tr/books?id=e677kp7OhzAC&hl=tr&source=gbs_navlinks_s. Accessed: 25 Aug 2021.

21. Egorov VI, Lajne VA, Kalinina MI. Raschet bloka radioelektronnoj apparatury s estestvennoj ventilyaciej. Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki. 2003; 9: 33-36.

22. Smolin EV. Sistema upravleniya predpuskovym podogrevom elektronnoi apparatury v usloviyakh nizkikh temperatur: Patent RUS №96615. 08.10.2010. Available at https://yandex.ru/patents/doc/RU96615U1_20100810. Accessed: 25 Aug 2021.

23. Popov VA. Stabilizirovannyi istochnik postoyannogo ili peremennogo napryazheniya. Patent USSR №636592. 05.12.1978. Byul. № 45. Available at https://yandex.ru/patents/doc/SU636592A1_19781205. Accessed: 25 Aug 2021.

24. Derevyanchenko IL, Burmaka AA. Dvenadtsativol'tovyi istochnik bespereboinogo pitaniya postoyannogo toka. Patent RUS №34819. 10.12.2003. Available at https://yandex.ru/patents/doc/RU34819U1_20031210. Accessed: 25 Aug 2021.

25. Passport of power supply BP12-4-3,7A, ZAO «NTF TIREKS». Available at: http://ntftirex.ru/docs/BP12-4-3.7A.pdf. Accessed: 25 Aug 2021.

26. Technical description and passport of «Voltage source ARPV-UH series». Available at: https://arlight-russia.ru/upload/iblock/6b4/Datasheet_ARPV-UH_025171-025045-025046.pdf. Accessed: 25 Aug 2021.

27. Zhuravlev AV, Revnev SN, Revneva LA, et al. Blok pitaniya. Patent RUS №106487. 10.07.2011. Available at https://yandex.ru/patents/doc/RU106487U1_20110710. Accessed: 25 Aug 2021.

28. Denisenko EA, Tarasov MM, Krivoshej AA, et al. Istochniki besperebojnogo i avtonomnogo elektrosnabzheniya. Politematicheskij setevoj elektronnyj nauchnyj zhurnal KubGAU. 2016; 115: 1337-1349.

29. Karagodin VV, Polyanskij KA, Gorin VA. Strukturno-parametricheskaya optimizaciya sistemy besperebojnogo elektrosnabzheniya otvetstvennyh potrebitelej. Priborostroenie. 2017;60(1):14-23.

30. Hwu KI, Shieh J. Applying Module-Link Method to Multiple Power Supplies Paralleled. IEEE IECON 2017 – 43rd Annual Conference of the IEEE Industrial Electronics Society. Beijing; 2017. pp. 901–903.

31. Ismailov TA, Muslimov EM., Rashidhanov AT, et al. Obespechenie teplovogo rezhima priborov raspredelennogo pitaniya v sostave korabel'nyh sistem vtorichnogo elektropitaniya na baze unificirovannyh blokov. Vestnik DGTU. Tekhnicheskie nauki. 2016;42(3): 64-72.

32. Mandzij BA, Volochij BYU, Ozirkovskij LD, et al. Sravnenie nadezhnosti istochnikov besperebojnogo elektropitaniya s nagruzhennymi i nenagruzhennymi rezervnymi modulyami. Trudy Mezhdunarodnogo simpoziuma «Nadezhnost' i kachestvo». 2013,1:132-135.

33. Tatunov SYU. Razrabotka programmy imitacionnogo modelirovaniya bezotkaznosti blokov pitaniya. Novye informacionnye tekhnologii v avtomatizirovannyh sistemah. 2019;22: 109- 112.

34. Datasheet «TPS2475x 12-A eFuse Circuit Protector with Current Monitor TPS24750, TPS24751», Texas Instruments Inc. 2013, revised December 2018 Available at: https://www.ti.com/lit/ds/symlink/tps24751.pdf. Accessed: 25 Aug 2021.

35. Datasheet «DVCL28 Series High Reliability Hybrid Inrush Current Limiter», VPT- Inc. 2017. Available at: https://www.vptpower.com/wp-content/uploads/downloads/2017/08/DS-DVCL28-5.0.pdf. Accessed: 25 Aug 2021.

36. Datasheet «MAX17613A/MAX17613B/MAX17613C 4.5V to 60V, 3A Current- Limiter with OV, UV and Reverse Protection», Maxim Integrated. February 2019. Available at: https://datasheets.maximintegrated.com/en/ds/MAX17613A-MAX17613C.pdf. Accessed: 25 Aug 2021.

37. Berg VR, Brodnikov SN, Mikheev VV, et al. Intellektual'naya sistema preobrazovaniya napryazheniya postoyannogo toka dlya dinamicheski izmenyayushcheisya nagruzki. Patent RUS №2692089. 21.06.2019. Byul. №18 Available at: https://yandex.ru/patents/doc/RU2692089C2_20190621. Accessed: 25 Aug 2021.

38. Fedorov AV, Orel EA. Otkazoustoichivaya sistema elektropitaniya s vozmozhnost'yu gibkoi nastroiki parametrov. Patent RUS №2746221. 09.04.2021. Byul. №10. Available at: https://yandex.ru/patents/doc/RU2020127684A_20210118 Accessed: 25 Aug 2021.

39. Meng L, Dragicevic T, Vasquez J, et al.Tertiary and Secondary Control Levels for Efficiency Optimization and System Damping in Droop Controlled DC-DC Converters. IEEE Transactions on Smart Grid. 2015;6(6):2615–2626.

40. Hu T., Khan M., Xu K., et al. Design of an Input-Parallel Output-Parallel Multi- Module DC-DC Converter Using a Ring Communication Structure. Journal of Power Electronics. 2015;15(4):886–898.

41. Sun B. How to Parallel Two DC/DC Converters with Digital Controllers. Analog Design Journal. 2018;3Q:1–5.

42. Klassen SV, Klassen TS, Luft SV. Current Sharing in Digitally Controlled DC-DC Converters Connected in Parallel. International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devises, EDM; 2019. pp. 541-546.

43. Katalupov OI. Modul'nyj istochnik pitaniya s konfiguriruemoj strukturoj. Politematicheskij setevoj elektronnyj nauchnyj zhurnal KubGAU. 2017;131:1192-1203.

44. Danilov DA, Egorov VI, Fadeeva SV, et al. Modelirovanie teplovyh rezhimov elektronnyh sistem s estestvennoj ventilyaciej. Izvestiya vysshih uchebnyh zavedenij. Priborostroenie. 2012;53(4): 41-45.

45. Povgorodnij VO. Proektirovanie pechatnyh plat s uchetom temperaturnogo vozdejstviya. ASU i pribory avtomatiki. 2007;138: 66-71.

46. Efremenkov IV, Sorokin MYU. Provedenie inzhenernogo rascheta teplovogo vozdejstviya elementov elektronnyh plat. Izvestiya Samarskogo nauchnogo centra RAN. 2016;18(4-3):663-668

47. SHarkov AV, Gerasyutenko VV, Minkin DA. Modelirovanie teplovogo rezhima elektronnogo oborudovaniya na osnove rezul'tatov teplovizionnoj s"emki temperaturnyh polej elementov. Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki. 2020;20(2):272-276.

48. Ismailov TA, Rashidhanov AT, YUsufov SHA. Termoelektricheskoe ustrojstvo dlya obespecheniya teplovogo rezhima blokov radioelektronnyh system. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2015;37(2):50-59

49. Libenko YUN. Ekspluatacionnye vozmozhnosti preobrazovatelej napryazheniya s magistral'no-modul'noj arhitekturoj. Prakticheskaya silovaya elektronika. 2012;4(48):6-9

50. ZHadnov V.V. Model' magistral'no-modul'nogo preobrazovatelya napryazheniya dlya rascheta ego narabotki do otkaza metodom statisticheskogo modelirovaniya pri smeshannom rezervirovanii ego kanalov. Trudy Mezhdunarodnogo simpoziuma «Nadezhnost' i kachestvo». 2020;1:52-55.


Review

For citations:


Shpenst V.A., Orel E.A. Methods of ensuring the operational stability of dc-dc power supply in arctic conditions. Power engineering: research, equipment, technology. 2021;23(4):166-179. (In Russ.) https://doi.org/10.30724/1998-9903-2021-23-4-166-179

Views: 622


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)