The main types of wind turbines-generators in the power supply system
https://doi.org/10.30724/1998-9903-2021-23-5-24-33
Abstract
PURPOSE. Conduct a detailed analysis of existing wind turbines. Analyze the role, place and features of the functioning of wind power plants. Provide various options for generators and schemes for converting wind energy into electricity. Provide recommendations for improving the reliability of wind turbines in smart grids.
METHODS. The article was prepared using analytical methods, statistical, theoretical, factorial and technical methods.
RESULTS. A fixed speed asynchronous generator used in a wind power conversion system (WECS) without a power converter interface draws a significant portion of the reactive power from the grid. This configuration features simple, reliable operation. Wind turbine asynchronous generator with dual power supply. can improve overall power conversion efficiency by performing maximum power point tracking (MPPT), and an increase in speed of about 30% can improve dynamic performance and increase resilience to system disturbances that are not available for turbine types 1 and 2. The use of full-scale 100% power converters will significantly increase the productivity of SPEV wind energy conversion systems, but will slightly increase the cost of the power converter, up to 7% - 12% of the total equipment cost. By using a large number of pole pairs for all types of permanent magnet synchronous generator (PMG), the turbine gearbox can be removed. This type of wind energy conversion system is more resilient to grid disruptions compared to type 1, 2 and 3 wind systems. The review shows that types 3 and 4 technologies are used to most efficiently sell and recycle wind turbines in electricity markets.
CONCLUSION. The article analyzes the features of the functioning of wind power plants operating on the grid. Various options for generators and schemes for converting wind energy into electricity are presented. A detailed analysis of existing wind turbines is provided. Recommendations are given for improving the reliability and efficiency of wind power plants in smart grids.
About the Authors
S. K. SheryazovRussian Federation
Saken Koyshybaevich Sheryazov
Chelyabinsk
S. S. Issenov
Kazakhstan
Sultanbek Sansyzbaevich Issenov
Nur-Sultan
R. M. Iskakov
Kazakhstan
Ruslan Maratbekovich Iskakov
Nur-Sultan
A. B. Kaidar
Kazakhstan
Argyn Bauyrzhanuly Kaidar – Master of Engineering and Technology
Nur-Sultan
References
1. Sheryazov SK, Shelubaev MV, Obukhov SG. Renewable Sources in System Distributed Generation. International Conference on Industrial Engineering, Applications and Manufacturing. ICIEAM 2017. doi: 10.1109/ICIEAM.2017.8076247.
2. Sheryazov SK, Ptashkina-Girina OS. Increasing power supply efficiency by using renewable sources. 2nd International Conference on Industrial Engineering. Applications and Manufacturing. ICIEAM. 2016. doi: 10.1109/ICIEAM.2016.7910986.
3. Sheryazov SK, Ptashkina-Girina OS, Nizamutdinova NS. Technological and Economic Evaluation of the System of Heat Supply with the Usage of Renewable Sources of Energy. 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Publisher: IEEE - 2019. doi: 10.1109/FarEastCon.2018.8602526.
4. Sheryazov SK, Shelubaev MV. Vetroelektricheskie ustanovki b sisteme elektrosnabgenya selskohozyastvennih potrebitelei: Monografya. 2018. Wind power plants in the power supply system of agricultural consumers. Chelyabinsk: South Ural State Agrarian University, p. 184.
5. Sheryazov SK 2013. Methodology of Renewable Sources Efficient Use. In the Proceedings of the VI international research and practice conference «European Science and Technology», Germany: pp: 343-347.
6. Seitkazin SB, Kaidar AB, Kaidar M.B. Zhel-kun elektrlik stantsiyalar: Monograph. Pavlodar: Kereku. 2019. 175 bet.
7. Shapkenov BK, Markovsky VP, Kislov AP, et al. Topology virtutis pars multi-gradu electrica potentia converters sui iuris electrica potentia systemata. «XIX Satbayev okulary» Zhas galymdar, magister discipulo, discipulus hominum Mektep okushylarynyn : halykar. al. Conf. Mat-dona Academician I. I. Streety 120 Gildiya aralen. Pavlodar: S. Toraigyrov atyndagy PMU, 2019. V. 12. «Studentter». 2019. 296.
8. Kislov AP, Shapkenov BK, Markovsky VP, et al. Analysis requisita sui iuris potentia copia ratio, quantum ad impendendum electro copulatius, cum «XIX Satbayev okulary» Zhas galymdar, magister discipulo, discipulus hominum Mektep okushylarynyn : halykar. al. Conf. Mat-dona Academician I I. Streety 120 Gildiya aralen. Pavlodar: S. Toraigyrov atyndagy PMU, 2019. V. 21 «Zhas galymdar». 2019. 420 b.
9. Kislov AP, Kaidar AB, Markovsky. Opus ad usum altilium repono cogitationes in potentia copia ex renewable sources. PMU khabarshysy Acta de PSU. Sère. Potentia. 2014;2:112-117.
10. Kaidara B, Shapkenov BK, Kislov AP, et al. Industria-Efficiens ventus generantibus, cum melior industria perficientur. Collectio Internationalis scientific et practica colloquium. YII Toraigyrov lectiones. Qualis vita in Pavlodar tellus. Status et spes, dedicavit ad 55th anniversario S. Toraighyrov Pavlodar state University. Pavlodar: 2015;5:293-298.
11. Kaidar A.B, Kopyrin VS., Shapkenov, et al. Nibh studiis an inverter cum pulsusvestibulum, arcu enim potentia copia ratio, cum renewable industria fontes. PMU khabarshysy Acta de PSU. Sère. Potentia. 2014;3:137-143.
12. Kaidar AB, Shapkenov BK, Markovsky V.P. Aestimatio mediocris et efficax bona current, virtute stabilis damna switching ad gradus, an inverter cum pulsus-vestibulum, arcu enim potentia copia ratio, cum renewable industria fontes. PMU khabarshysy Acta de PSU. Sère. Potentia. 2014;3:129-137.
13. Kaidar YZh, Lukutin AB, Obukhov BV, et al. Nubila ventus component usura Kaimal s functio Nubila ventus component, cum Kaimal. PMU khabarshysy Acta de PSU. Sère. Potentia. 2014;4:120-125.beisembaev B. U. Analysis requisita sui iuris vim ratio habita ratione electro compatibility
14. Aliferov AI, Kislov A, Markovskiy V, et al. Pulse-width modulation of base vectors in transistor invertor. 11 International forum on strategic technology (IFOST 2016): proc., Novosibirsk, 1–3 June 2016. Novosibirsk: NSTU, 2016;2:130–132. doi: 10.1109/IFOST.2016.7884209.
15. Nikolaev YE, Osipov VN, Ignatov VY. Calculation methodology of the energy indicators of an self-contained energy complex including gas turbine plants, wind-driven power plant and electric storage cell. Power engineering: research, equipment, technology. 2020;22(3):36-43. https://doi.org/10.30724/1998-9903-2020-22-3-36-43.
16. Saryyev KA. Determining wind energy resources in Turkmenistan. Power engineering: research, equipment, technology. 2020; 22(6):143-154. https://doi.org/10.30724/1998-9903-2020-22-6-143-154.
17. Lavrik AY, Zhukovsky YL, Lavrik AY, et al. Fatures of the optimal composition of a wind-solar power plant with diesel generators. Power engineering: research, equipment, technology. 2020;22(1):10-17. https://doi.org/10.30724/1998-9903-2020-22-1-10-17.
Review
For citations:
Sheryazov S.K., Issenov S.S., Iskakov R.M., Kaidar A.B. The main types of wind turbines-generators in the power supply system. Power engineering: research, equipment, technology. 2021;23(5):24-33. (In Russ.) https://doi.org/10.30724/1998-9903-2021-23-5-24-33