Load switching between main power grid to the backup grid by standard automatic transfer switch
https://doi.org/10.30724/1998-9903-2021-23-5-160-171
Abstract
PURPOSE. To develop a variant of the algorithm for the automatic input of the reserve, which consists in transferring the load in case of emergency situations, to make a simulation model in the MatLab® environment corresponding to the developed generalized electrical scheme of the system.
METHODS. When solving the problem, the method of digital modeling was used, which consists in the maximum approximation of the system under study to a real object, implemented by means of MatLab.
RESULTS. It is proposed to study the methods of synthesis of digital models of compensation of voltage drops by the example of a study of an automatic reserve transfer system, demonstrating an approach to modeling this system. When developing models in the MatLab environment, the parameters of real technical elements and devices and their digital analogues are taken into account. The issue of creating a digital model of an electric drive system, including a model of an asynchronous motor with a short-circuited rotor, is considered. The result, after final refinement, can be used to design a real system in production conditions.
CONCLUSIONS. The developed model of the automatic transfer switch system is operable, the time indicators are satisfactory for systems that do not make excessive demands on performances and time intervals. For systems that are sensitive to current inrushes during load transfer, some improvements are required, which are reduced to the implementation of a high-speed automatic switch system. The development of this system is currently at the research stage, namely, the compilation of a load transfer logic that takes into account the phase matching of electrical circuits.
About the Authors
A. P. ChervonenkoRussian Federation
Andrey P. Chervonenko
Novosibirsk
D. A. Kotin
Russian Federation
Denis A. Kotin
Novosibirsk
A. V. Rozhko
Russian Federation
Rozhko V. Anastasia
Novosibirsk
References
1. Power quality. The overlooked productivity variable [Elektronnyi resurs]. (https: // literature.rockwellautomation.com/idc/groups/literature/documents/br/power-br011_-en-p.pdf).
2. De Santis M, Noce C, Varilone P, et al. Analysis of the origin of measured voltage sags in interconnected networks. Electric Power Systems Research. 2018;154;391–400.
3. BONPET. Avtomaticheskii vvod rezerva (AVR): naznachenie, ustroistvo, skhemy [Elektronnyi resurs] / BONPET. Rezhim dostupa: https://chint-electric.ru/automatic-transferswitch Zagl. s ekrana (data obrashcheniya: 05.06.2021).
4. SZEMO. Bystrodeistvuyushchii avtomaticheskii vvod rezerva (BAVR) [Elektronnyi resurs] / SZEMO. Rezhim dostupa: https://www.szemo.ru/inzhiniring/elektrosnabzhenie/prosadkiiperenapryazheniya/bystrodeystvuyushchiy-avtomaticheskiy-vvod-rezerva-bavr/ Zagl. s ekrana (data obrashcheniya: 18.04.2021).
5. ABB High speed transfer device and system SUE 3000 [Elektronnyi resurs]. (https://library.e.abb.com/public/b95ac5124a4a0286c125777000265598/1VBX100001P0101%20sue%203000 hsts%20en%20presentation.pdf);
6. Latipov ST. Nakopiteli elektroenergii kak sredstvo predotvrashcheniya narushenii elektrosnabzheniya. Molodoi uchenyi. 2017;16(150):187-189.
7. Gomez JC, Morcos MM. A simple methodology for estimating the effect of volt-age sags produced by induction motor starting cycles on sensitive equipment. Conf. Rec. IAS Annu. Meet. IEEE Ind. Appl. Soc. 2001;2:1196–1199.
8. Zolotov II, Shevtsov AA. Vliyanie potrebitelei elektroenergii na formu pitayushchego napryazheniya avtonomnykh sistem elektrosnabzheniya. Izvestiya vysshikh uchebnykh zavedenii. PROBLEMY ENERGETIKI. 2019;2:1-2:131-140.
9. Zatsepina VI, Zatsepin EP, Shachnev OYa. Modelirovanie provalov napryazheniya v sistemakh elektrosnabzheniya metallurgicheskikh proizvodstv. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta.2017;23(2):247-251.
10. Sekretarev YuA, Menyaikin DA. Osobennosti raschetov posledstvii otkazov elektrosnabzheniya v raspredelitel'nykh setyakh s monopotrebitelem elektricheskoi energii. Izvestiya vysshikh uchebnykh zavedenii. PROBLEMY ENERGETIKI. 2020;22(2):43-50.
11. Fedotov AI, Bakhteev KR. Vliyanie forsirovki vozbuzhdeniya sinkhronnykh mashin na uroven' ostatochnogo napryazheniya pri kratkovremennykh narusheniyakh elek-trosnabzheniya. Izvestiya vysshikh uchebnykh zavedenii. PROBLEMY ENERGETIKI. 2016;7-8:64-71.
12. Liao H, Milanovic J, Rodrigues M, et al. Voltage Sag Estimation in Sparsely Monitored Power Systems Based on Deep Learning and System Area Mapping. IEEE Trans-actions on Power Delivery, 1–1.2018.
13. Lenev SN, Okhlopkov AV, Guzhavina VV, et al. Universal'noe ustroistvo kompensatsii provalov i preryvanii napryazheniya dlya obespecheniya nadezhnoi raboty elektropriemnikov PAO «Mosenergo». Elektricheskie stantsii. 2020;11:14-24.
14. Burkov AF, Yurin VN, Avetisyan VR. Issledovanie vozmozhnostei povysheniya energoeffektivnosti asinkhronnykh dvigatelei Izvestiya vysshikh uchebnykh zavedenii. PROBLEMY ENERGETIKI. 2018;20(9-10):92-100;
15. Nos OV. Postroenie algoritmov sinkhronizatsii trekhfaznykh napryazhenii avtonomnogo invertora i seti. Avtometriya. 2017;53(4):66–73.
Review
For citations:
Chervonenko A.P., Kotin D.A., Rozhko A.V. Load switching between main power grid to the backup grid by standard automatic transfer switch. Power engineering: research, equipment, technology. 2021;23(5):160-171. (In Russ.) https://doi.org/10.30724/1998-9903-2021-23-5-160-171