Preview

Power engineering: research, equipment, technology

Advanced search

Minimization of power losses in passive power filters

https://doi.org/10.30724/1998-9903-2021-23-6-42-52

Abstract

THE PURPOSE. Broadband passive filters (BBF) are an effective measure to mitigate harmonic resonance in power systems with nonlinear harmonic producing loads. The disadvantage of simple second-order broadband filters are pure selectivity and excessive fundamental frequency losses. This is especially evident in devices designed for low-order harmonics mitigation. This paper presents new broadband filter configurations with superior performances and low fundamental frequency losses.

METHODS. A general method of broadband passive filter design is considered. The filter has the form of single-loaded ladder LC-two-port. Conditions of minimal fundamental frequency loss of the filer are determined.

RESULTS. This paper presents new broadband filter configurations with superior damping performances and low fundamental frequency losses. Different broadband filter configurations are compared. The results show that 3-5 order broadband ladder filters have better filtering performance and lower power loss than traditional C-type filters.

CONCLUSION. The proposed broadband filters can be used for industrial power systems with powerful nonlinear loads. This will normalize the power quality and at the same time improve the energy efficiency of compensating devices.

About the Authors

N. P. Boyarskaya
Krasnoyarsk State Agricultural University
Russian Federation

Krasnoyarsk



V. P. Dovgun
Siberian Federal University
Russian Federation

Krasnoyarsk



D. E. Egorov
Siberian Federal University
Russian Federation

Krasnoyarsk



V. V. Novikov
Siberian Federal University
Russian Federation

Krasnoyarsk



D. A. Shandrigin
Siberian Federal University
Russian Federation

Krasnoyarsk



References

1. Zhezhelenko IV. Vysshie garmoniki v sistemakh promyshlennogo elektrosnabzheniya prompredpriyati. Moscow: Energoatomizdat Publ., 2000, 331 p.

2. Kovernikova LI, Tulckiy VN, Shamonov RG. Katchestvo elektreoenergii v EES Rosii, tekustchie problem I neobkhodimye resheniya. Elektroenergiya. Peredatcha I raspredelenie. 2016;2 (35):28-38.

3. Orcajo GA, Adruga P, Rodrigues J, et al. Overcurrent protection response of a hot rolling mill filtering system analysis of the process conditions. IEEE trans. on industry applications. 2017;53(3):2596-2607.

4. Singh B, Gairola S, Singh BN, et al. Multipulse AC–DC Converters for Improving Power Quality: A Review IEEE trans. on Power Electronics. 2008;23(1):260-281.

5. Badrzadeh B, Smith K, Wilson R. Designing passive harmonic filters for an aluminum smelting plant. IEEE trans. on industry applications.2011:47(2):973-983.

6. Nascimento C, Watanabe E, Diene O, et al. Analysis of noncharacteristic harmonics generated by voltage-source converters operating under unbalanced voltage. IEEE trans. On Power Delivery. 2017; 32(2):951-961.

7. Li X, Xu W, Ding T. Damped high passive filter – a new filtering scheme for multipulse rectifier systems. IEEE trans. on Power Delivery. 2017:32(1):117-124.

8. Das J. Design and Application of a Second-Order High-Pass Damped Filter for 8000-hp ID Fan Drives A Case Study. IEEE trans. on Industry Applications. 2015;51(2):1417-1426.

9. Allenbaugh M, Dionise T, Natali T. Harmonic Analysis and Filter Bank Design for a New Rectifier for a Cold Roll Mill. IEEE trans. on Industry Applications. 2013;49(3):1161-1170.

10. Wang Y, Xu S, Xu W, et al. Comparative Studies on Design Methods for Detuned CType Filter. IEEE trans. on Power Delivery. 2020;35(4):1725-1734.

11. Horton R., Dugan R., Hallmark D. Novel Design Methodology for C-Type Harmonic Filter Banks Applied in HV and EHV Networks. Proceedings of the Conference PES T&D 2012, Orlando, FL, USA, 7–10 May 2012; pp. 1–6.

12. Lamlom A, Ahmed Ibrahim A, Balc M, et al. Optimal Design and Analysis of AntiResonance C-Type High-Pass Filters. In Proceedings of the IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017.

13. Zhang G, Wang Y, Xu W, Sitther E. Characteristic parameter-based detuned C-type filter design. IEEE power and energy technology systems journal. 2018;5:2:65-72.

14. Lange A, Redlarski G. Selection of C-type filters for reactive power compensation and filtration of higher harmonics injected into the transmission system by arc furnances. Energies, 2020;13:2330; doi: 10.3390/en13092330.

15. Xu W, Ding T, Li X, et al. Resonance-free shunt capacitors configurations, design methods and comparative analysis. IEEE Trans. on Power Delivery. 2016;31(5):2287–2295.

16. Wang Y, Xu W, A shared resonance damping scheme for multiple switchable capacitors. IEEE Trans. Power Deliery. 2018;33(4):1973–1980.

17. Dovgun VP, Egorov DE, Novikov VV, et al. Parametritcheskii sintez shirokopklosnyh filtrov. Elektritchestvo. 2018;12:14-21.

18. Dovgun VP, Egorov DE. Shirokogokosnnye silovye filtry dlya system elektrosnabgeniya s mnogofaznymi preobrazovatelyzmi. Elektrotekhnira. 2020;5:47-51.

19. Egorov DE, Dovgun VP, Boyzrskaya NP, et al. Korrekciya koefficienta moshnosti v sistemakh c mnogofaznymi nelineynyvi nagruzkami. Izvestiya vysshikh ucshebnykh zavedeniy. PROBLEMY ENERGETIKI. 2020;22:6:3-15. doi:10.30724/1998-9903-2020-22-6-3-15.

20. Ulakhovich DA. Osnovy teorii lineynykh elektricheskikh cepey: ucheb.posobie. SPb.: BXV-Peterburg, 2009. 816 p.


Review

For citations:


Boyarskaya N.P., Dovgun V.P., Egorov D.E., Novikov V.V., Shandrigin D.A. Minimization of power losses in passive power filters. Power engineering: research, equipment, technology. 2021;23(6):42-52. (In Russ.) https://doi.org/10.30724/1998-9903-2021-23-6-42-52

Views: 277


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)