Analysis of the structure and energy parameters of the electrical complex (EC) of gas complex №1 «Gazprom dobycha Yamburg» LLC
https://doi.org/10.30724/1998-9903-2021-23-6-66-86
Abstract
THE PURPOSE. Consider the structure of the centralized and autonomous power supply system for gas field (GF) №1 of «Gazprom dobycha Yamburg» LLC. Perform the calculation of the main energy indicators (consumed active, reactive and apparent power, power factors, reactive power factors) for each section of busbars (SB) of complete transformer substations (CTS) according to wattmetrograms taken by electromechanical meters on the linear cells of closed switchgear (CS) during a calendar year. Calculate the peak current of a group of electric receivers (ER) for each CS CTS. To analyze the features of the functioning and the load factor of the autonomous power supply system from diesel power plants (DPP) according to the schemes: “one generator - a separate group of electrical consumers” (EС-1) and a single generation center with a cascade (ring) switching circuit (EС-2). Compare the annual fuel consumption of diesel power plants with EС-1 and EС-2 by monthly load factors.
METHODS. When solving the problem, an approximate method was used to determine the energy indicators of electrical loads at each CS CTS and the load factors of DPP according to the readings of active power (wattmetrograms) for the period under consideration.
RESULTS. The article describes the relevance of the topic, considers the features of the construction and functioning of the EC for a centralized and autonomous power supply system. An approximate calculation of the energy parameters at the each CTS SB of the integrated gas treatment plant (IGTP) and the booster compressor station (BCS) was made based on the readings of the active power consumed during the period under consideration. This article discusses the fuel and energy characteristics and features of the functioning of DPP. The monthly and annual weighted average load factors were calculated and the peak currents of the ER group were determined for each DPP. The calculation of the annual fuel consumption of DPP with EС-1 and EС-2 has been made according to monthly load factors.
CONCLUSION. As a result of the analysis of the structure and energy characteristics, the features of the functioning of the centralized and autonomous power supply system were revealed, which determine the range of problems and shortcomings that require further research and study, with the subsequent development of a set of measures to improve the energy efficiency of the EC.
About the Authors
L. R. MaskovRussian Federation
Kazan
V. Y. Kornilov
Russian Federation
Kazan
References
1. Men'shov BG, Sud II. Elektrotekhnicheskie ustanovki i kompleksy v neftegazovoi promyshlennosti. Moscow: Nedra; 1984.
2. Men'shov BG, Ershov MS, Yarizov AD. Elektrifikatsiya predpriyatii neftyanoi i gazovoi promyshlennosti. Moscow: Nedra; 2000.
3. Shklyarskii YaE, Zamyatina EN, Zamyatin EO. Otsenka energeticheskoi effektivnosti elektrotekhnicheskogo kompleksa. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2020; 3: 339-347.
4. Ershov MS, Konkin RN. Opredelenie parametrov istochnikov pitaniya elektrotekhnicheskikh kompleksov s elektrodvigatel'noi nagruzkoi. V sbornike: Kul'tura, nauka, obrazovanie: problemy i perspektivy. Materialy VI mezhdunarodnoi nauchno-prakticheskoi konferentsii. 2017. pp. 130-133.
5. Kozyaruk AE. Energoeffektivnye elektrotekhnicheskie kompleksy gornodobyvayushchikh i transportnykh mashin. Zapiski Gornogo instituta. 2016; 218:261-269.
6. Ortega A, Milano F. Generalized model of vsc-based energy storage systems for transient stability analysis. IEEE Transactions on Power Systems, 2016; 31(5): 3369–3380.
7. Jain A, Biyik E, Chakrabortty A. A model predictive control design for selective modal damping in power systems. In Proc. of American Control Conference, 2015, pp. 4314–4319.
8. Xiaodong Liang. Innovative design and feasibility study for a subsea electrical submersible pump system. 2016 IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS). Conference Paper. Publisher: IEEE. Date of Conference: 1-5 May 2016. DOI: 10.1109/ICPS.2016.7490232.
9. Hussain A. Hussain, Bahareh Anvari, Hamid A. Toliyat. A control method for linear permanent magnet electric submersible pumps in a modified integrated drive-motor system. 2017 IEEE International Electric Machines and Drives Conference (IEMDC). Conference Paper. Publisher: IEEE. Date of Conference: 21-24 May 2017. doi: 10.1109/IEMDC.2017.8002315.
10. Lucio Steckling, Marcelo Lobo Heldwein. Model-Based Synchronous Optimal Modulation for Three-Level Inverters Applied to Electrical Submersible Pumps Systems. PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Publisher: VDE. Date of Conference: 7-9 May 2019.
11. Xiaodonz Liang, Ahmad El-Kadri. Factors Affecting Electrical Submersible Pump Systems Operation. 2018 IEEE Electrical Power and Energy Conference (EPEC). Conference Paper. Publisher: IEEE. Date of Conference: 10-11 Oct. 2018. doi: 10.1109/EPEC.2018.8598331.
12. Xiaodong Liang, Omid Ghoreishi, Wilsun Xu. Downhole Tool Design for Conditional Monitoring of Electrical Submersible Motors in Oil Field Facilities. IEEE Transactions on Industry Applications. 2017; 53 (3): 3164-3174.
13. Jorge Andrés Prada Mejía, Luis Angel Silva, Julián Andrés Peña Flórez. Control Strategy for Oil Production Wells with Electrical Submersible Pumping Based on the Nonlinear Model-Based Predictive Control Technique // 2018 IEEE ANDESCON. Conference Paper. Publisher: IEEE. Date of Conference: 22-24 Aug. 2018. doi: 10.1109/ANDESCON.2018.8564581.
14. Ramli M.A.M, Hiendro A, Twaha S. Economic analysis of PV/diesel hybrid system with flywheel energy storage. Renew. Energy. 2015; 78:398-405.
15. Ershov MS, Zhalilov RB. Modelirovanie nadezhnosti sistem elektrosnabzheniya s avtonomnymi istochnikami pitaniya. V sbornike: Metodicheskie voprosy issledovaniya nadezhnosti bol'shikh sistem energetiki v 2-kh knigakh. 2019. pp. 353-361.
16. Savenko AE, Savenko SE. Rabota mnogogeneratornogo avtonomnogo elektrotekhnicheskogo kompleksa. Materialy III Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Dostizheniya, problemy i perspektivy razvitiya neftegazovoi otrasli». Al'met'evsk: Al'met'evskii gosudarstvennyi neftyanoi instituta. 2018. pp. 465-469.
17. Gorodnov AG, Kornilov VYu, Abdulhy Al-Ali MA. The methodology for design of autonomous power supply system of oil producing company optimized on length and number of generation centers. Power engineering: research, equipment, technology. 2020. 22 (1): 69-76.
18. Abdulhy Al-Ali MA, Kornilov VYu, Gorodnov AG. Optimized the performance of electrical equipment in gas separation stations (Degassing station ds) and electrical submersible pumps of oil equipment for oil Rumaila field. Power engineering: research, equipment, technology. 2019. 21. (1-2): 141-145.
19. Abdulhy Al-Ali MA, Kornilov VY, Gorodnov AG. Optimal operation of electrical power generators for wells operated by artificial lifting at Rumaila field. Proceedings of the higher educational institutions. ENERGY SECTOR PROBLEMS. 2018; 20(11-12):127-132.
20. Mvaku UM, Kornilov VYu. Elektrotekhnicheskie kompleksy tekhnologicheskikh kompleksov osnovnogo oborudovaniya ekspluatatsii skvazhin. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. 2013. 16 (1):34-46.
21. Gorodnov AG. Otsenka energoeffektivnosti elektrotekhnicheskogo kompleksa neftedobyvayushchego predpriyatiya s avtonomnoi sistemoi elektrosnabzheniya. Innovatsionnaya nauka v globalizuyushchemsya mire. 2020. 7 (1):30-31.
22. Radkevich, VN. Proektirovanie sistem elektrosnabzheniya. Minsk: NPOOO «Pion»; 2001.
23. Kabyshev AV. Elektrosnabzhenie ob"ektov. Raschet elektricheskikh nagruzok, nagrev provodnikov i elektrooborudovaniya. Tomsk: izd-vo Tomskogo politekhnicheskogo universiteta, 2007.(Ch.1): 185.
24. Spravochnye dannye po raschetnym koeffitsientam elektricheskikh nagruzok. Moscow: VNIPI Tyazhpromelektroproekt; 1990.
25. Gorodnov AG. Model' elektrotekhnicheskogo kompleksa s avtonomnoi sistemoi elektrosnabzheniya mekhanizirovannoi dobychi nefti. V sbornike: tekhnologicheskoe razvitie: tendentsii, problemy i perspektivy. Sbornik statei po itogam Mezhdunarodnoi nauchnoprakticheskoi konferentsii. 2020. pp. 8-10.
26. Lukutin BV, Shandarova EB. Sposoby snizheniya raskhoda topliva dizel'nykh elektrostantsii. V sbornike: Prirodnye resursy i ekologiya Dal'nevostochnogo regiona. Materialy Mezhdunarodnogo nauchno-prakticheskogo foruma. 2013. pp. 393-397.
27. Grinkrug MS. Vybor tipov dizel'-generatorov na dizel'nykh elektrostantsiyakh iz uslovii minimal'nogo godovogo raskhoda topliva. Teploenergetika. 2009. 11 (1): 18-21.
28. Girshin SS, Goryunov VN, Shepelev AO. Optimal'noe upravlenie kondensatornymi batareyami v raspredelitel'nykh setyakh. V sbornike: uchenye Omska - regionu. Materialy II Regional'noi nauchno-tekhnicheskoi konferentsii. 2017. pp. 75-79.
29. Mvaku UM, Kornilov VYu. Povyshenie effektivnosti raboty elektrotekhnicheskogo kompleksa neftegazodobyvayushchego predpriyatiya. Energetika Tatarstana. 2013;30 (2): 46-50.
30. Mvaku UM, Kornilov VYu. Snizhenie poter' i potrebleniya elektricheskoi energii v elektrotekhnicheskikh kompleksakh neftegazodobyvayushchego predpriyatiya. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. 2013;17 (2):7-17.
31. Mvaku UM, Kornilov VYu. Optimizatsiya rezhimov raboty elektrotekhnicheskogo kompleksa osnovnogo oborudovaniya neftegazopererabatyvayushchego predpriyatiya v protsesse podgotovki nefti. Proceedings of the higher educational institutions. ENERGY SECTOR PROBLEMS. 2013.(1-2): 115.
32. Dixon J, Moran L, Rodrigues J, et al. Reactive power compensation technologies: stateof-the-art review. Proc. of the IEEE. 2005; 93 (12): 2144-2164.
33. Badrzadeh D, Smith K, Wilson R. Designing passive harmonic filters for an aluminum smelting plant. IEEE trans. on industry applications. 2011; 47 (2): 973- 983.
34. Gorodnov AG. Soglasovanie energeticheskikh parametrov elementov elektrotekhnicheskogo kompleksa neftedobyvayushchego predpriyatiya. V sbornike: fundamental'nye i prikladnye aspekty razvitiya sovremennoi nauki. Sbornik statei po materialam II Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Ufa. 2020. pp. 47-50.
35. Savenko AE, Savenko PS. Issledovanie i optimizatsiya raboty generatornykh agregatov avtonomnogo elektrotekhnicheskogo kompleksa. V sbornike: Sostoyanie i perspektivy razvitiya elektro- i teplotekhnologii (XIX Benardosovskie chteniya). Materialy Mezhdunarodnoi nauchnotekhnicheskoi konferentsii, posvyashchennoi 175-letiyu so dnya rozhdeniya N.N. Benardosa. 2017. pp. 9-12.
36. Gorodnov AG. Imitatsionnaya model' dlya opredeleniya optimal'nykh energeticheskikh parametrov elementov elektrotekhnicheskogo kompleksa neftedobyvayushchego predpriyatiya. V sbornike: aktual'nye voprosy sovremennoi nauki i praktiki. Sbornik statei po materialam II Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Ufa. 2020. pp. 44-48.
37. Savenko AE. Ispol'zovanie avtonomnykh elektrotekhnicheskikh kompleksov v neftegazovoi otrasli. V sbornike: Dostizheniya, problemy i perspektivy razvitiya neftegazovoi otrasli. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 60-letiyu vysshego neftegazovogo obrazovaniya v Respublike Tatarstan. Al'met'evskii gosudarstvennyi neftyanoi institut. 2016. pp. 218-221.
Review
For citations:
Maskov L.R., Kornilov V.Y. Analysis of the structure and energy parameters of the electrical complex (EC) of gas complex №1 «Gazprom dobycha Yamburg» LLC. Power engineering: research, equipment, technology. 2021;23(6):66-86. (In Russ.) https://doi.org/10.30724/1998-9903-2021-23-6-66-86