Optimization of parameters of quiet permanent magnet synchronous motor for linear drive of long-stroke single-stage piston compressor
https://doi.org/10.30724/1998-9903-2021-23-6-148-156
Abstract
The article proposes a solution to the problem of optimizing the magnetic system design of a low-speed synchronous motor with permanent magnets (PMSM) as a part of a linear drive of a single-stage piston compressor that is promising for use in compressor construction for a given law of motion of the moving part. The maximum efficiency of the electromechanical converter is used as an optimality criterion. By solving the optimization problem, the relationship between the design parameters and the energy performance of the PMSM was established in an analytical form. The substantiation of the maximum possible efficiency of the PMSM for the sinusoidal and non-sinusoidal laws of motion of the inductor is given.
PURPOSE: Obtaining a solution to the problem of optimizing the magnetic system design of a low-speed PMSM as a part of a linear drive of a single-stage reciprocating compressor for a given law of motion of the moving part that meets the criterion of maximum efficiency of an electromechanical converter.
METHODS: The methods of the theory of electromechanical energy converters, theoretical electrical engineering, mathematical modeling, optimization methods, variational, differential and integral calculus, as well as experimental methods are used.
RESULTS: The results of an experimental study of the developed prototype of a low-speed SDPM as a part of a linear drive of a long-stroke single-stage reciprocating compressor are presented.
CONCLUSION: The highest efficiency of the PMSM is achieved when the current in the armature winding changes with time in direct proportion to the speed of the inductor. To ensure this mode, it is proposed to use an open-source frequency converter, which makes it possible to implement the time dependence of the current in the armature winding in accordance with the given law of motion of the moving part. The PMSM is controlled by a frequency converter based on structural models created in the MexBios environment.
References
1. Yusha VL, Busarov SS, Gromov AYu. Assessment of the Prospects of Development of Medium-Pressure Single-Stage Piston Compressor Units. Shemical and petroleum engineering. 2017. Chemical and Petroleum Engineering, 53(7–8). https://doi.org/10.1007/s10556-017-0362-2.
2. Plastinin, P.I. Porshnevye kompressory. Pt.1. Teoriya i raschet. 2-e izd., pererab. i dop. M.: Kolos, 2006. 456 p.
3. Huang Y, Liu C, Bamed S. Hy draulic System Design of Hydraulic Actuators for Large Butterfly Valves. J. Eng. Sci. Technol. Rev. 2014;7:150–155, Sep. 2014.
4. Petrov TI, Safin AR. Razrabotka i realizatsiya stenda dlya podtverzhdeniya effektivnosti topologicheskoi optimizatsii rotora sinkhronnykh dvigatelei s postoyannymi magnitami. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. 2021;13(2:(50):100-108.
5. Ang S, Rong-ming C, Hui-xing Z. Research on the iterative learning control method for linear motor driven compressor. International Conference on Electrical Machines and Systems, 2011. pp. 1–4.
6. Safin AR. Razrabotka matematicheskoi modeli avtonomnogo istochnika elektrosnabzheniya s svobodno-porshnevym dvigatelem na baze sinkhronnoi elektricheskoi mashiny vozvratno-postupatel'nogo deistviya s postoyannymi magnitami/ A.R. Safin, I.V. Ivshin, E.I. Gracheva, T.I. Petrov. Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki. 2020;22(1):38-48.
7. Ismagilov FR, Gerasin AA, Khairullin IKh, et al. I87 Elektromekhanicheskie sistemy s vysokokoertsitivnymi postoyannymi magnitami. M.: Mashinostroenie, 2014. 267 p.
8. Yusha VL, Busarov SS. Perspektivy sozdaniya maloraskhodnykh kompressornykh agregatov srednego i vysokogo davleniya na baze unifitsirovannykh tikhokhodnykh dlinnokhodovykh stupenei. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki. 2018;24(4):80–89. doi: 10.18721/JEST.24408.
9. Busarov SS, Vasil'ev VK, Busarov IS, et al. Parametricheskii analiz rabochikh protsessov tikhokhodnykh dlinnokhodovykh bessmazochnykh porshnevykh kompressornykh stupenei na baze verifitsirovannoi metodiki rascheta. Omskii nauchnyi vestnik. 2017;4 (154):40-44.
10. Cui F, Sun Z, Xu W. Comparative analysis of bilateral permanent magnet linear synchronous motors with different structures. CES Trans. Electr. Mach. Syst. 2020;4(2):142–150.
11. Yusha VL, Busarov SS, Nedovenchanyi AV, Tatevosyan AA. Comparative Analysis of the Magnetoelectric Drive with Linear Drives of Low-Speed Single-Stage Piston Units. AIP Conference Proceedings 2285, 030066-2020-p/030066-1-030066-8. Rezhim dostupa: https://doi.org/10.1063/5.0027290.
12. Pakhomin SA. Optimizatsionnoe proektirovanie ventil'nykh mashin s postoyannymi magnitami na osnove paketa FEMM/S.A. Pakhomin, L.S. Pakhomin. Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika. 2018;61(6):26-31.
13. Tatevosyan AA. Reshenie zadachi optimal'nogo upravleniya magnitoelektricheskogo privoda kolebatel'nogo dvizheniya. Omskii nauchnyi vestnik. 2019;4 (166):48-51.
14. Ryashentsev NP, Kovalev YuZ. Dinamika elektromagnitnykh impul'snykh sistem. Novosibirsk: Nauka. 1974. 186 p.
15. Tatevosyan AA, Polyakov DA, Kholmov MA. Characteristics research of a permanent magnet linear synchronous motor driving piston compressor. Proceedings of the 3rd 2021 International Youth Conference on Radio Electronics, Electrical and Power Engineering, REEPE 2021. doi 10.1109/REEPE51337.2021.9387980.
16. Poltschak F. A high efficient linear motor for compressor applications. 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2014, pp. 1356–1361.
Review
For citations:
Tatevosyan A.A. Optimization of parameters of quiet permanent magnet synchronous motor for linear drive of long-stroke single-stage piston compressor. Power engineering: research, equipment, technology. 2021;23(6):148-156. (In Russ.) https://doi.org/10.30724/1998-9903-2021-23-6-148-156