Preview

Power engineering: research, equipment, technology

Advanced search

The main types of wind turbinesgenerators in the power supply system

https://doi.org/10.30724/1998-9903-2022-24-1-99-113

Abstract

THE PURPOSE. To consider the problems of protecting equipment of thermal power plants and heat supply systems from internal corrosion. To study the stages of development of domestic deaeration devices and the principles of atmospheric and vacuum deaeration in the framework of the boiler house in Ulyanovsk. To analyze the operation and maintenance of deaerators: DSA-75, AWACS and DV-75 in the boiler house of JSC «Ulyanovsk Cartridge Plant», and in the UMUP «City Heating System».

METHODS. When solving this problem, we used an analytical method for evaluating the operation of the DSA-75 atmospheric deaerator and the DV-75 vacuum deaerator.

RESULTS. The article presents the main technical characteristics of the atmospheric deaerator DSA-75 and the vacuum deaerator DV-75, and graphical dependencies characterizing the operation of the above deaerators were obtained.

CONCLUSION. An analysis of the work of the «AWACS» deaerator showed that this device was never able to take its rightful place as the main and additional deaeration device in the boiler house in Ulyanovsk. Accordingly, the «AWACS» deaerator could not stand on a par with the long-established deaerators developed at CKTI. The authors found that at the present time, at the UMUP «City Heating System» boiler house considered in this article, the water treatment system using the traditional DV-75 vacuum deaerator is well debugged and performs its functions. Thus, high-quality water treatment is ensured in the boiler house.

About the Authors

O. V. Pazushkina
Ulyanovsk State Technical University
Russian Federation

Olga V. Pazushkina



M. V. Zolin
Ulyanovsk State Technical University
Russian Federation

Maksim V. Zolin



I. A. Silkin
Ulyanovsk State Technical University
Russian Federation

Igor A. Silkin



References

1. Sharapov VI, Pazushkina OV, Mingaraeva EV. Nizkotemperaturnaya deaeratsiya vody v teploenergeticheskikh ustanovkakh; Ul'yan. gos. tekhn. un-t. Ul'yanovsk : UlGTU, 2020. 202 p.

2. Sharapov VI, Tsyura DV. The water thermal deaeration processes management technologies. Russian national symposium on power engineering. Kazan: KSPEU.2001.

3. Malinina OV. Tekhnologii transporta i utilizatsii vypara termicheskikh deaeratorov. Problemy energetiki. Izvestiya vuzov. 2004;3-4:100-111.

4. Sharapov VI, Fetkullov MR, Tsyura DV. Ob energeticheskoi effektivnosti upravleniya deaeratorami TETs po neskol'kim parametram. Problemy energetiki. Izvestiya vuzov. 2005;34:46-54.

5. Sharapov VI, Kuz'min AV. O podogreve podpitochnoi vody teploseti osnovnym kondensatom turbiny. Problemy energetiki. Izvestiya vuzov. 2012;3-4:3-13.

6. Sharapov VI, , Kudryavtseva EV. (Mingaraeva), Pazushkina OV. Massoobmen i gidrodinamika deaeratorov TES pri ispol'zovanii v kachestve desorbiruyushchei sredy prirodnogo gaza. Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki. 2017;9(1-2):8694.

7. Sharapov VI, Pazushkina OV, Zolin MV. Energoeffektivnaya skhema vklyucheniya vakuumnogo deaeratora v sistemu regeneratsii teplofikatsionnoi turboustanovki. S.O.K. 2019; 6:36-39.

8. Sharapov VI, Kudryavtseva EV. (Mingaraeva) Hydrodynamics and mass transfer deaeration of water on thermal power plants when used natural gas as a desorbing agent. Journal of Physics: Conference Series. 2017.

9. Sharapov VI, Zamaleev MM, Kudryavtseva EV. Methods for Monitoring the Vacuum Seals of Turbine Systems and Vacuum Deaerators. Power Technology and Engineering. 2015; 49 (4):287-290.

10. Sharapov VI, Pazushkina OV, Kudryavtseva EV. Energy-Effective Method for Low

11. Temperature Deaeration of Make-up Water on the Heating Supply System of Heat Power Plants. Thermal Engineering. 2016;63(1):687-690.

12. Sharapov VI, Kudryavtseva EV. Energy Efficiency of Low-Temperature Deaeration of Makeup Water for a District Heating System. Power Technology and Engineering. 2016;50(2):204-207.

13. Mayr F. Kesselbetriebstechnik, V.: Dr. Ingo Resch, 10. Auflage. 2003. Seite 392.

14. WasserBauGesellschaft Kulmbach mbH. Доступно по: https://www.wbgkulmbach.de. Ссылка активна на 15 октября 2021 г.

15. Eurowater Wasseraufbereitung GmbH, Hamburg, Deutschland. https://www.wlw.de/de/firma/eurowater-wasseraufbereitung-gmbh-346176. Ссылка активна на 15 октября 2021 г.

16. Podchernin D.P. Sravnenie razlichnykh sistem deaeratsii i osobennosti ikh vnedreni. Novosti teplosnabzheniya. 2017;2.

17. Zhurnal o kotel'nom oborudovanii. Dostupno po: https://kotlotech.ru/deaerator-dsa/ Ssylka aktivna na 18 iyulya 2021 g. 17. Deaeratory «AWACS». // AVOK. 2004. № 6.

18. Sharapov VI, Orlo M.E. Proverka deaeratora «AWACS» v promyshlennoi ekspluatatsii. Energosberezhenie i vodopodgotovka. 2008;2 (52):60–62.

19. Sharapov VI. Deaeratsiya vody v teplogeneriruyushchikh ustanovkakh maloi moshchnosti. Novosti teplosnabzheniya. 2007;5:16-22.

20. Ledukhovskii GV, Vinogradov VN, Shatova IA, et al. Rekonstruktsiya atmosfernykh struinykh deaeratorov s primeneniem kavitatsionnykh deaeratsionnykh ustroistv «AWACS». Vestnik IGEU. 2014; 6:5-10.

21. Razinkov AA, Petukhova AYu., Ledukhovskii GV. Kharakteristiki vakuumnoatmosfernoi deaeratsionnoi ustanovki na baze deaeratorov «DSA» i «AWACS». Resursoenergosberezhenie i ekologo-energeticheskaya bezopasnost' promyshlennykh gorodov, Pyataya Vserossiiskaya nauchno-prakticheskaya konferentsiya, g. Volzhskii, 23-26 sentyabrya 2014 g. Sbornik matkrialov konferentsii. Volzhskii: Filial MEI v g. Volzhskom, 2014;182:132-137.

22. Leduhovsky GV. Modeling The Water Decarbonization Processes In Atmospheric Deaerators. Thermal engineering. 2017;64(2):127-133.

23. OOO Armiks. Dostupno po: https://www.armatyra.org/product/9512/. Ssylka aktivna na 18 iyulya 2021 g.

24. Teplotekh-Komplekt. Dostupno po: https://tt-k.ru/Deaerator_DSA_75-25.htm. Ssylka aktivna na 18 iyulya 2021 g.

25. Promyshlennoe EnergoOborudovanie. Dostupno po: http://kesur.ru/store/10000138/10000586/10000588/deaerator-vakuumnyy-dv-5-deaerator-vakuumnyydsv-9/. Ssylka aktivna na 18 iyulya 2021 g.


Review

For citations:


Pazushkina O.V., Zolin M.V., Silkin I.A. The main types of wind turbinesgenerators in the power supply system. Power engineering: research, equipment, technology. 2022;24(1):99-113. (In Russ.) https://doi.org/10.30724/1998-9903-2022-24-1-99-113

Views: 318


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)