Selection of circuit and technical solutions for improvement the quality of electricity in adaptive networks with traction AC power
https://doi.org/10.30724/1998-9903-2022-24-3-42-54
Abstract
THE PURPOSE. Analysis of existing circuit and technical solutions for improving the quality of electricity in networks with traction load and assessment of their compliance with new properties of the electric network when switching to an active adaptive platform. Determination of the features of the operation of electric networks with traction load during the transition to an active-adaptive platform. Review of existing technical means and circuit solutions for improving the quality of electricity in electric networks with traction load and their analysis for compliance with new properties of the electric network.
METHODS. To solve the tasks set, a structural analysis of existing technical and circuit solutions was performed to improve the quality of electricity in electric networks with traction load.
RESULTS. In this article, the systematization of the compliance of technical means with the solved problems in the field of electricity quality is carried out. The features of the operation of electric networks with traction load during the transition to an active-adaptive platform are determined. Modern technical means and circuit solutions corresponding to the new properties of the electrical network are revealed. A variant of combining technologies for a complex effect on the quality of electricity is proposed.
CONCLUSION. When switching electric networks with traction load to an active adaptive platform in order to improve the quality of electricity, it is advisable to use technical means capable of providing PCE within acceptable limits in real time, depending on the operating modes of the power system and traction load. Such means include distributed generation, electric energy storage, active filter-compensating and balancing devices, FACTS technologies of the second generation. Classical approaches to solving problems with the quality of electrical energy based on the use of passive technical devices do not correspond to the new properties of active-adaptive networks with alternating current traction.
About the Authors
N. V. SavinaRussian Federation
Natalya V. Savina
I. A. Lisogurskiy
Russian Federation
Ivan A. Lisogurskiy
L. N. Lisogurskaya
Russian Federation
Lydia N. Lisogurskaya
References
1. Savina NV, Lisogurskiy IA. Tyaga peremennogo toka, kak istochnik snizheniya effektivnosti i nadezhnosti funktsionirovaniya elektricheskikh setei. Proizvodstvennye tekhnologii budushchego: ot sozdaniya k vnedreniyu: IV Mezhdunarodnaya nauchno-prakticheskaya konferentsiya, Komsomolsk-on-Amur, Russia, 16–26 Feb 2021; Komsomolsk-on-Amur: Komsomolsk-na-amure state university, 2021. pp.143-147. doi:10.17084/978-5-7765-1468-5_2021_143
2. Bulatov YuN, Kryukov AV, Cherepanov AV Kachestvo elektroenergii v vysokovol'tnykh elektricheskikh setyakh, pitayushchikh tyagovye podstantsii Transsiba. Energeticheskaya politika. 2018; 1:86-95. EDN: XORWEP
3. S. Hu, et al. A Power Factor-Oriented Railway Power Flow Controller for Power Quality Improvement in Electrical Railway Power System. IEEE Transactions on Industrial Electronics. 2017; 64(2):1167-1177. doi: 10.1109/TIE.2016.2615265.
4. Pee-Chin Tan, R.E. Morrison, D. G. Holmes Voltage form factor control and reactive power compensation in a 25-kV electrified railway system using a shunt active filter based on voltage detection. IEEE Transactions on Industry Applications. 2003; 39(2):575-581. doi: 10.1109/TIA.2003.809455.
5. H. Liao, S. Abdelrahman, J. V. Milanović Zonal Mitigation of Power Quality Using FACTS Devices for Provision of Differentiated Quality of Electricity Supply in Networks With Renewable Generation. IEEE Transactions on Power Delivery. 2017: 32(4):1975-1985. doi: 10.1109/TPWRD.2016.2585882.
6. Ginn H.L., Czarnecki L.S. An optimization based method for selection of resonant harmonic filter branch parameters. IEEE Trans. on Power Delivery. 2006: 21(3):1445–1451.
7. Gary W. Chang, Hung-Lu Wang, Shou-Yung Chu. Strategic placement and sizing of passive filters in a power system for controlling voltage distortion. IEEE Transactions on Power Delivery. 2004: 19(3):1204–1211.
8. A. F. Zobaa and S. H. E. Abdel Aleem, A New Approach for Harmonic Distortion Minimization in Power Systems Supplying Nonlinear Loads. IEEE Transactions on Industrial Informatics. 2014: 2(10):1401-1412. doi: 10.1109/TII.2014.2307196.
9. Kryukov AV, Cherepanov AV, Shafikov AR Snizhenie garmonicheskikh iskazhenii v vysokovol'tnykh setyakh, pitayushchikh tyagovye podstantsii, na osnove aktivnykh fil'tro. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie. 2019; 61(1):36-46. doi: 10.26731/1813-9108.2019.1(61).36-46. EDN: ZFBFFZ
10. L. Liu, N. Dai, K. W. Lao, W. Hua A Co-Phase Traction Power Supply System Based on Asymmetric Three-Leg Hybrid Power Quality Conditioner. IEEE Transactions on Vehicular Technology. 2020: 69(12):14645-14656. doi: 10.1109/TVT.2020.3032939.
11. Morozov PV, Morozov YuV Raspredelenie moshchnosti mezhdu obmotkami tyagovykh transformatorov na osnove tsifrovoi fil'tratsii. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2019; 149(6):1136-1144. doi: 10.21285/1814-3520-2019-6-1136-1144. EDN: LJFCMP
12. Kryukov A.V., Lyubchenko I.A. Improving the quality of electricity supply systems in stationary objects of railway transport. Power engineering: research, equipment, technology. 2021;23(6):53-65. https://doi.org/10.30724/1998-9903-2021-23-6-53-65
13. Dikovich V.V., Katz E.M., Stremilova O.S. Selection of methods and tools of voltage unbalance reduction within the Eastern part of Siberian integrated power system. Power engineering: research, equipment, technology. 2016;(9-10):66-72. https://doi.org/10.30724/1998-9903-2016-0-9-10-66-72
14. Arsent'ev GO, Arsent'ev OV, Kryukov AV Primenenie energeticheskikh routerov v elektrotekhnicheskikh kompleksakh zheleznykh dorog peremennogo toka. Elektrotekhnicheskie sistemy i kompleksy. 2021; 50(1):10-15. doi: 10.18503/2311-8318-2021-1(50)-10-15. EDN: ELNTGF
15. Savina NV, Lisogurskii IA, Lisogurskaya LN Primenenie tekhnologii aktivno-adaptivnykh setei dlya upravleniya kachestvom elektroenergii v elektricheskikh setyakh s tyagovoi nagruzkoi. Vestnik Amurskogo gosudarstvennogo universiteta. Seriya: Estestvennye i ekonomicheskie nauki. 2021; 93:56-61. doi: 10.22250/jasu.93.12.
16. Fedorov VK, Leonov EN, Fedorov DV Vliyanie raspredelennoi generatsii na poteri i kachestvo elektricheskoi energii. Omskii nauchnyi vestnik. 2016; 150(6):72-76.
17. Zhezhelenko IV. Vysshie garmoniki v sistemakh promyshlennogo elektrosnabzheniya prompredpriyati. Moscow: Energoatomizdat Publ., 2000, 331 p.
18. Mustafa GM, Gusev SI. Opyt ispol'zovaniya aktivnykh fil'tro-kompensiruyushchikh ustroistv shuntiruyushchego i seriesnogo tipa v elektricheskikh setyakh. Upravlenie kachestvom elektricheskoi energii: Sbornik trudov Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Moskva, 05–07 Dec 2018; Moskva: Obshchestvo s ogranichennoi otvetstvennost'yu Tsentr poligraficheskikh uslug « RADUGA», 2018. pp. 67-77.
19. Zakaryukin VP, Kryukov AV, Ivanova ES Analiz skhem simmetrirovaniya tyagovykh nagruzok zheleznykh dorog peremennogo toka. Sistemy. Metody. Tekhnologii. 2013; 20(4):68-73.
20. Kiselev, MG Issledovanie i razrabotka metodov simmetrirovaniya tokov v trekhfaznykh sistemakh elektrosnabzheniya na osnove silovykh elektronnykh ustroistv kompensatsii neaktivnoi moshchnosti: spetsial'nost' 05.09.01 «Elektromekhanika i elektricheskie apparaty»: avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata tekhnicheskikh nauk. Moscow; 2017. Available at: https://viewer.rsl.ru/ru/rsl01006654507?page=1&rotate=0&theme=white Accessed: 12 April 2022.
Review
For citations:
Savina N.V., Lisogurskiy I.A., Lisogurskaya L.N. Selection of circuit and technical solutions for improvement the quality of electricity in adaptive networks with traction AC power. Power engineering: research, equipment, technology. 2022;24(3):42-54. (In Russ.) https://doi.org/10.30724/1998-9903-2022-24-3-42-54