Preview

Power engineering: research, equipment, technology

Advanced search

Development of a model of an electrical complex for gas air cooling devices of gas field №1 gazprom dobycha Yamburg LLC with a centralized power supply system in the MATLAB/SIMULINK program

https://doi.org/10.30724/1998-9903-2022-24-2-50-71

Abstract

THE PURPOSE. To develop a model in MATLAB/SIMULINK environment for the system of mechatronic movement modules (MMD) of the electrical complex, which includes gas air coolers with centralized system of power supply of the gas field 1 of "Gazprom dobycha Yamburg" LLC. To analyze the energy efficiency of MMD ETC ACHE. To perform the experimental research of the EMD EMD ETC ACHE model in the dynamic modes in order to determine the regularity of the influence of single (group) starts on the power supply source overload. To develop a switching algorithm for MMD ETK AHE at direct starts of asynchronous motors (AD), providing restoration of the technological mode within the optimum time after the voltage disappearance for the centralized power supply system.

METHODS. The results presented in work are received with use of methods of the theory of electric and magnetic circuits, the theory of electric drive and electric machines, methods of optimization of power supply systems, analytical and numerical methods of applied mathematics, methods of mathematical and computer modeling.

RESULTS. In article urgency of a theme is described, features of construction and modelling of ETK GP in the environment MATLAB/SIMULINK with the centralized system of power supply are considered. The comparative analysis of existing methods and calculation of parameters of the substitution schemes of the MMD ETK GP was carried out. Approximate calculation of mechanical and inertial characteristics for creating a model of load (resistance moment) for the motor. The model of EMD of electric motor drive compressor unit was created, as close as possible to the real existing system on the basis of catalog (passport) data of individual elements of electric motor drive unit. There were analyzed and developed proposals to enhance power efficiency of EMD ETC AHE and algorithms, which provide optimal direct start-up of the AHE fan group within the set time after the power failure without overloading of the power supply source, were proposed.

CONCLUSIONS. On the basis of results of computer modeling, the peculiarities of operation of EMD ETH ACHE, which require further study and development of corrective measures to improve energy efficiency and reliability of power supply system of GP. Combination of direct starts of single (group) fans of ACHE, obtained at this stage of research of EMD EMD ETC ACHE model, will create the basis (algorithm) for automated control system of this complex, which will ensure restoration of technological mode within optimum time after power outage without overloading of centralized power supply source. Calculation of parameters of individual elements of MMD model of ETC AVO will allow to use data to create other models of ETC GP, which will allow to conduct in-depth research and improve the energy efficiency of the entire system of power supply of GP.

About the Authors

L. R. Maskov
Kazan State Power Engineering University
Russian Federation

Linar R. Maskov



V. Y. Kornilov
Kazan State Power Engineering University
Russian Federation

Vladimir Y. Kornilov



References

1. Men'shov BG, Sud II. Elektrifikatsiya predpriyatii neftyanoi i gazovoi promyshlennosti. Moscow: Nedra; 1984.

2. Ziyodullo E., Holboiv F. Modernization of Control Systems of Electric Drives of Mine Lifting Machines. E3S Web of Conferences: 3rd International Innovative Mining Symposium, IIMS 2018: Electronic edition, Kemerovo, 3–5 Oct 2018. Kemerovo: EDP Sciences, 2018. doi: 10.1051/e3sconf/20184103006.

3. Kozyaruk AE. Energoeffektivnye elektrotekhnicheskie kompleksy gornodobyvayushchikh i transportnykh mashin. Zapiski Gornogo instituta. 2016; 218: 261-269.

4. Abdulhy Al-Ali MA, Kornilov VY, Gorodnov AG. Optimal operation of electrical power generators for wells operated by artificial lifting at Rumaila field. Proceedings of the higher educational institutions. ENERGY SECTOR PROBLEMS. 2018; 20(11-12):127-132. doi: 10.30724/1998-9903-2018-20-11-12-127-132.

5. Shklyarskii YaE, Zamyatina EN, Zamyatin EO. Otsenka energeticheskoi effektivnosti elektrotekhnicheskogo kompleksa. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2020; 3: 339-347.

6. Gorodnov AG. Otsenka energoeffektivnosti elektrotekhnicheskogo kompleksa neftedobyvayushchego predpriyatiya s avtonomnoi sistemoi elektrosnabzheniya. Innovatsionnaya nauka v globalizuyushchemsya mire. 2020. 7 (1): 30-31.

7. Savenko AE, Savenko PS. Optimizatsiya ispol'zovaniya avtonomnogo elektrotekhnicheskogo kompleksa na ob"ektakh neftegazovoi promyshlennosti. Dostizheniya, problemy i perspektivy razvitiya neftegazovoi otrasli: materialy IV Mezhdunarodnoi nauchnoprakticheskoi konferentsii; 16–18 Oct 2019. Al'met'evsk. Russia: Al'met'evskii gosudarstvennyi neftyanoi institut, 2019. pp. 429-432.

8. Xiaodong L., Omid G., Wilsun X. Downhole Tool Design for Conditional Monitoring of Electrical Submersible Motors in Oil Field Facilities. IEEE Transactions on Industry Applications. 2017; 53 (3): 3164-3174. doi: 10.1109/TIA.2016.2613984.

9. Maskov LR, Kornilov VYu. Analiz struktury i energeticheskikh parametrov elektrotekhnicheskogo kompleksa gazovogo promysla №1 OOO «Gazprom dobycha Yamburg» Proceedings of the higher educational institutions. ENERGY SECTOR PROBLEMS. 2021. 23(6):66-86. doi: 10.30724/1998-9903-2021-23-6-66-86.

10. Shabanov VA, Pashkin VV, Ivashkin ON. Modelirovanie protsessa puska elektroprivoda AVO gaza v rezhime protivovklyucheniya. Elektroprivod, elektrotekhnologii i elektrooborudovanie predpriyatii: sbornik nauchnykh trudov konferentsii. Ufa: Russia: Ufimskii gosudarstvennyi neftyanoi tekhnicheskii universitet, 2013. pp. 127-133.

11. Arshakyan II, Artyukhov II, Stepanov SF. Kompensatsiya reaktivnoi moshchnosti v sistemakh elektrosnabzheniya apparatov vozdushnogo okhlazhdeniya gaza. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta. 2004. 2(1): 92-100.

12. Qiong W., Saeed J., Francisco L. Parameter Estimation of Three-phase Transformer Models for Low-frequency Transient Studies from Terminal Measurements. IEEE Trans. Magnetics. 2017. 53(7): 1-8. doi:10.1109/TMAG.2016.2563389.

13. Wenxia S., Daixiao P., Ming Y., et al. Low-frequency model for single-phase transformers based on the three-component Preisach model considering deep saturation International Journal of Electrical Power & Energy Systems. 2018. 110(2):107-117. doi: 10.1016/j.ijepes.2019.02.050.

14. Novash IV, Rumyantsev YuV. Raschet parametrov modeli trekhfaznogo transformatora iz biblioteki MATLAB-SIMULINK s uchetom nasyshcheniya magnitoprovoda. Energetika. Izvestiya vysshikh uchebnykh zavedenii i energeticheskikh ob"edinenii SNG. 2015. 1:12-24.

15. SimPower Systems. User’s Guide Version 3. The MathWorks, Inc.; 2003.

16. Wu B., Narimani M. High-Power converters and AC drives. Wiley-IEEE Press, 2nd ed. 2017.

17. Kuznetsov EM, Zubov DD, Koshman RV. Identifikatsiya parametrov skhemy zameshcheniya asinkhronnogo elektrodvigatelya v programmnoi srede Multysim. Aktual'nye voprosy energetiki: materialy Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem; 17 Mart 2018. Omsk: Omskii gosudarstvennyi tekhnicheskii universitet, 2018. pp. 248-251.

18. Makarov VG, Tsvenger IG, Sharyapov AM, i dr. Analiz spektral'nykh kharakteristik toka asinkhronnogo elektroprivoda. Vestnik Tekhnologicheskogo universiteta. 2018. 21(7):80-86.

19. Zhen G., Qing-wei Z. The Study on Mathematical Model and Simulation of Asynchronous Motor Considering Iron Loss. Journal of Physics:Conference Series. 2018. 1060. DOI:10.1088/1742-6596/1060/1/012085.

20. Pilyaev SN, Afonichev DN. Obosnovanie parametrov skhemy zameshcheniya asinkhronnogo elektrodvigatelya. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta. 2020. 13(4): 129-138. (In Russ). doi: 10.17238/issn2071-2243.2020.4.129.

21. Gridin VM. Raschet kharakteristik asinkhronnykh dvigatelei po katalozhnym dannym. Elektrichestvo. 2018. 9: 44-48. doi: 10.24160/0013-5380-2018-9-44-48.

22. Myasovskii VA. Issledovanie metodov rascheta parametrov skhemy zameshcheniya asinkhronnogo dvigatelya po dannym kataloga proizvoditelya. Molodoi uchenyi. 2020. 310 (20):127-133.

23. Fattakhov KM, Fattakhov RK. Metod opredeleniya parametrov skhemy zameshcheniya asinkhronnoi mashiny po pasportnym i katalozhnym dannym. Elektroprivod, elektrotekhnologii i elektrooborudovanie predpriyatii: sbornik nauchnykh trudov konferentsii; 08–09 April 2011. Ufa: Ufimskii gosudarstvennyi neftyanoi tekhnicheskii universitet, 2011. pp. 123-131.

24. Moshchinskii YuA, Bespalov VYa, Kiryakin AA. Opredelenie parametrov skhemy zameshcheniya asinkhronnykh dvigatelei po katalozhnym dannym. Elektrichestvo. 1998. 4:38-42.

25. Vliyanie zagruzki elektrodvigatelei na koeffitsienty poleznogo deistviya i moshchnosti [Elektronnyi resurs]. In: Obrazovatel'nyi sait Shkola dlya elektrika. Available at: http://electricalschool.info/spravochnik/maschiny/1113-vlijanie-zagruzki-jelektrodvigatelejj.html. Accessed: 21 Jan 2022.

26. Elektroprivod ventilyacionnoj ustanovki [Elektronnyj resurs]. In: Obrazovatel'nyj sajt. URL:https://works.doklad.ru/view/1aTyWgvjBKc/2.html. Accessed: 01 Apr. 2022.

27. Leznov BS. Energosberezhenie i reguliruemyi elektroprivod v nasosnykh i vozdukhoduvnykh ustanovkakh. Moscow.: Energoatomizdat, 2006.

28. Golubev ML. Raschet tokov korotkogo zamykaniya v elektrosetyakh 0,4-35 kV. 2nd ed. Moscow: Energiya, 1980.


Review

For citations:


Maskov L.R., Kornilov V.Y. Development of a model of an electrical complex for gas air cooling devices of gas field №1 gazprom dobycha Yamburg LLC with a centralized power supply system in the MATLAB/SIMULINK program. Power engineering: research, equipment, technology. 2022;24(2):50-71. (In Russ.) https://doi.org/10.30724/1998-9903-2022-24-2-50-71

Views: 246


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)