Led source of light with high light circuit
https://doi.org/10.30724/1998-9903-2022-24-3-112-120
Abstract
THE PURPOSE. Consider the problems of the heat transfer process in the structural elements of the LED light source. Describe the cooling system of an LED light source using an equivalent circuit and thermal resistances. Conduct a comparative analysis of cooling systems for LED lighting devices. Perform thermodynamic calculations of the light device radiator using computer programs of automatic design systems. Suggest a way to improve the heat transfer properties of the radiator of the LED light source.
METHODS. When solving the tasks set, the method of retrospective-prospective meta-analysis was used, computer programs of automatic design systems and direct determination of technical parameters using measuring instruments were used.
RESULTS. The article describes the relevance of the topic, discusses the features of the heat transfer process in the structural elements of the LED light source. Thermodynamic calculations of the radiator of the lighting device were made using computer programs of automatic design systems KOMPAS and SolidWorks. The article proposes a method for improving the heat transfer properties of the radiator of an LED light source.
CONCLUSION. There are many different cooling systems with their own advantages and disadvantages. The most efficient cooling systems are forced cooling systems, however, their use entails an increase in the final cost of the lighting device and a decrease in its light output due to an increase in energy consumption. Passive cooling systems are relatively cheap, but to provide effective cooling of LEDs, they must have a sufficient area of contact with the heat source, have good thermal conductivity and heat dissipation. In this case, the best way to improve the heat transfer properties of the radiator is to apply a special coating with a high heat transfer. This will increase the cooling efficiency with minimal cost without resorting to a significant change in the design features of an existing system.
About the Authors
R. R. ShirievRussian Federation
A. N. Borisov
Russian Federation
A. A. Valeev
Russian Federation
References
1. Mal'tsev A., Mal'tsev I. Kontrol' kachestva i nadezhnosti svetodiodov po teplovomu soprotivleniyu p-n-perekhod–korpus. Poluprovodnikovaya svetotekhnika. 2010;2(4):40-41.
2. Ma Y., Zhang L., Zhou T., Hou C., Kang J., Yang S., Xi X., Yuan M., Huang J., Wang R., Chen H., Wang Y., Selim F.A., Li M. High quantum efficiency CE:(LU,Y)3(AL,SC)2AL3O12transparent ceramics with excellent thermal stability for high-power white LEDS/LDS. Journal of Materials Chemistry C. 2020;8:46:16427-16435.
3. Gazalov B.C., Shabayev Ye.A., Blyagoz A.M. Analiz teplovogo rezhima moshchnykh svetodiodov .Mekhanizatsiya i elektrifikatsiya sel'skogo khozyaystva. 2008;6:36-38.
4. Khampston ZH., Kotov I. Upravleniye teplovym rezhimom svetodiodov: prognozy i izmereniya. Poluprovodnikovaya svetotekhnika. 2017;2(46):48-52.
5. Gupta G., Mema F., Hueting R.J.E. Electron-hole bilayer light-emitting device: concept and operation. Solid-State Electronics. 2020;168:107726.
6. Mal'tsev I.A., Mal'tsev A.A. Izmereniye teplovogo soprotivleniya perekhod-korpus sovremennykh svetodiodov v statsionarnom teplovom rezhime. V sbornike: Problemy i perspektivy razvitiya naukoyemkogo mashinostroyeniya. Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya. 2013. p. 342-344.
7. Tukshaitov R.KH., Alkhamss YA.SH., Ivanova V.R., Shiriyev R.R. Obespecheniye energoresursosberezheniya pri pitanii svetodiodnykh svetil'nikov ot gal'vanicheskikh elementov. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki. 2010;11-12:108-114.
8. Wang H.-M., Yao J.-S., Xue P. Light fades and life prediction of led light source. International Journal of Smart Home. 2015;9(11):225-234.
9. Vilisov A.A., Teplyakov K.V., Soldatkin V.S. Vliyaniye konstruktivnykh osobennostey svetodiodov na ikh teplovoye soprotivleniye. Elektronnyye sredstva i sistemy upravleniya. Materialy dokladov Mezhdunarodnoy nauchno-prakticheskoy konferentsii. 2017;1-1:287-289.
10. Shirobokova T.A., Chepkasova M.A. Teplovaya model' svetodiodnogo istochnika sveta. Innovatsii v sel'skom khozyaystve. 2018;3 (28):128-133.
11. Tukshaitov R.KH., Rozhentsova N.V., Denisova A.R. Issledovaniye rabotosposobnosti i kachestva funktsionirovaniya svetodiodnykh osvetitel'nykh elementov elektrotekhnicheskikh sistem pri predel'no dopustimoy temperature okruzhayushchey sredy. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki. 2021;23(4):96-104.
12. Mal'tsev A.A., Koryakin I.D. Izmereniye teplovogo soprotivleniya perekhod-korpus smd svetodiodov pri zhidkostnom okhlazhdeni.V sbornike: Novyye tekhnologii, materialy i oborudovaniye rossiyskoy aviakosmicheskoy otrasli. Materialy Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiyem. Materialy dokladov. 2018. S. 54-56.
13. Sevruk D.A., Lebedev K.N. Issledovaniye vliyaniya napryazheniya pitaniya na temperaturu i svetovoy potok fitosvetodiodnogo modulya 6040-A2525(A). Agrotekhnika i energoobespecheniye. 2019;1 (22):79-85.
14. Tukshaitov R.KH., Shiriyev R.R. Tipovyye i filamentnyye svetodiodnyye lampy. Kakim obrazom mozhno operativno otsenit' ikh kachestvo. Chast' 2. Poluprovodnikovaya svetotekhnika, 2018;5:24-27.
15. Hao R., Ge A., Tao X., Liu Y., Zhao B., Yang E. Optical design of a high-mast luminaire based on four cob led light source modules. Lighting Research and Technology. 2019;51(3):447-456.
16. Borisov A.N., Shiriyev R.R. Svetodiodnyy istochnik sveta s povyshennoy svetootdachey. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki. 2019;21:(1-2):111-119.
Review
For citations:
Shiriev R.R., Borisov A.N., Valeev A.A. Led source of light with high light circuit. Power engineering: research, equipment, technology. 2022;24(3):112-120. (In Russ.) https://doi.org/10.30724/1998-9903-2022-24-3-112-120