Preview

Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ

Расширенный поиск

Биодизельное топливо. Часть I. Способы получения

https://doi.org/10.30724/1998-9903-2022-24-4-16-49

Аннотация

ЦЕЛЬ. Представленная работа ставит перед собой цель анализа реалий и перспектив использования рабочих сред при получении биодизельного топлива, включающих в себя сверхкритическое флюидное состояние. МЕТОДЫ. Рассмотрены методы получения биодизельного топлива, включающие в себя метод переэтерификации, как наиболее распространенный, а также методы пиролиза и совместного процесса гидролиза и этерификации. РЕЗУЛЬТАТЫ. Рассмотрены традиционные (промышленно используемые способы получения биодизельного топлива), а также способы с участием сверхкритических флюидных сред в своей основе. Наряду с описанием состояния дел по обсуждаемой проблематике в мире приводятся и результаты собственных исследований, реализованных авторским коллективом настоящей статьи. Обращено внимание на перспективность ультразвукового эмульгирования реакционной смеси и использования гетерогенных катализаторов в целях смягчения сверхкритических флюидных условий осуществления процесса получения биодизельного топлива и энергосбережения. Обсуждены также условия получения биодизельного топлива без свободного глицерина и преобразования его в топливную составляющую. ЗАКЛЮЧЕНИЕ. Переэтерификация, осуществляемая в сверхкритических флюидных условиях, предоставляет значимые преимущества в сопоставлении с традиционным процессом и, особенно, в части возможности использования разнообразного и, в том числе, низкокачественного сырья, облегчает процедуру выделения конечного продукта и, наконец, делает возможным переход от относительно маломасштабных реализаций с реакторами периодического действия к высокопроизводительным установкам с проточными реакторами.

Об авторах

С. В. Мазанов
Казанский национальный исследовательский технологический университет
Россия

Мазанов Сергей Валерьевич – канд. техн. наук

г. Казань



Ф. М. Гумеров
Казанский национальный исследовательский технологический университет
Россия

Гумеров Фарид Мухамедович – д-р техн. наук

г. Казань



Р. А. Усманов
Казанский национальный исследовательский технологический университет
Россия

Усманов Рустем Айтуганович – д-р техн. наук

г. Казань



А. Р. Габитова
Казанский национальный исследовательский технологический университет
Россия

Габитова Асия Радифовна – канд. техн. наук

г. Казань



З. И. Зарипов
Казанский национальный исследовательский технологический университет
Россия

Зарипов Зуфар Ибрагимович – д-р техн. наук

г. Казань



С. Д. Варфоломеев
Институт биохимической физики им. Н.М. Эмануэля РАН
Россия

Варфоломеев Сергей Дмитриевич – д-р хим. наук

Москва



В. Б. Вольева
Институт биохимической физики им. Н.М. Эмануэля РАН
Россия

Вольева Виолетта Борисовна – канд. хим. наук

Москва



Ю. А. Шаповалов
Казахский национальный университет им. аль-Фараби
Казахстан

Шаповалов Юрий Александрович – д-р техн. наук

г. Алматы



Список литературы

1. Cvengrosova Z., Cvengros J., Hronce M. Rapeseed oil ethyl esters as alternative fuels and their quality control. Petroleum and Coal. 1997. V. 39. P. 36-40.

2. Wevten H., Willems L., Adriansen W., Van Ginneken L. Transesterification reaction of vegetable oil in supercritical methanol. Proc. of the 8 th Meeting on Supercritical Fluids. Bordeaux (France). 2002. V 1. Р. 139-144.

3. Марченко Г.Н., Алтынбаева Э.Р. Перспективы использования новых видов топлива и развития возобновляемых источников энергии // Вестник КГЭУ. 2010. №4. С. 6-13.

4. Моисеев И., Тарасов В., Трусов Л. Эволюция биоэнергетики. Время водорослей // The Chemical Journal. 2009. №12. С.24-29.

5. Sawangkeaw R., Bunyakiat K., Ngamprasertsith S. A review of laboratory-scale research on lipid conversion to biodiesel with supercritical methanol (2001–2009). J. of Supercritical Fluids. 2010. Vol. 55. P. 1-13.

6. Coronado C.R., de Carvalho J.A. Jr., Silveira J.L. Biodiesel CO2 emissions: a comparison with the main fuels in the Brazilian market. Fuel Processing Technology. 2009. V. 90. P. 204–211.

7. Hu Z., Tan P., Yan X., Lou D. Life cycle energy, environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China. Energy. 2008. V. 33. P. 1654–1658.

8. M.C. Math, S.P. Kumar, S.V. Chetty. Technologies for biodiesel production from used cooking oil — A review. Energy for Sustainable Development. 2010. V.14. №4. P. 339–345.

9. J.M. Marchetti, V.U. Miguel, A.F. Errazu. Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews. 2007. №11. P.1300–1311.

10. Glisic S., Skala D. The problems in design and detailed analyses of energy consumption for biodiesel synthesis at supercritical conditions. J. of Supercritical Fluids. 2009. V. 49. P. 293-301.

11. Ma F., Hanna M.A. Biodiesel production: a review. Bioresource Technology. 1999. V. 70. P. 1–15.

12. Газизов Р.А., Билалов Т.Р., Гумеров Ф.М., Габитов Ф.Р., Яруллин Р.С. Биодизель вплотную подошел к российским границам // Нефть и Капитал. 2002. № 1. С. 72-74.

13. Д.С. Дворецкий, С.А. Нагорнов, А.А. Ермаков, С.В. Неизвестная. Технология получения биодизельного топлива с использованием гетерофазных катализаторов и СВЧ-нагрева / Вопросы современной науки и практики. Спец. Выпуск. 2012. №39. C. 136-143.

14. N. Shibasaki-Kitakawa, H. Honda, H. Kuribayashi, T. Toda, T. Fukumura, T. Yonemoto. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresour. Technol. 2007. V. 98. P. 416-421.

15. C.E.T. Co, M.C. Tan, J.A.R. Diamante, L.R.C. Yan, R.R. Tan, L.F. Razon. Internal mass-transfer limitations on the transesterification of coconut oil using an anionic ion exchange resin in a packed bed reactor. Catal. Today. 2011. V.174. P. 54-58.

16. M.G. Falco, C.D. Córdoba, M.R. Capeletti, U. Sedran. Basic ion exchange resins as heterogeneous catalysts for biodiesel synthesis. Adv. Mater. Res. 2010. V. 132. P. 220-227.

17. Y. Feng, A. Zhang, J. Li, B. He. A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst. Bioresour. Technol. 2011. V. 102. P. 3607-3609.

18. B.M.E. Russbueldt, W.F. Hoelderich. New sulfonic acid ion-exchange resins for the preesterification of different oils and fats with high content of free fatty acids. Appl. Catal. A: Gen. 2009. V. 362. P. 47-57.

19. S.M. de Rezende, M. de Castro Reis, M.G. Reid, P. Lúcio Silva Jr, F.M.B. Coutinho, R.A. da Silva San Gil, E.R. Lachter. Transesterification of vegetable oils promoted by poly(styrene-divinylbenzene) and poly(divinylbenzene). Appl. Catal. A: Gen. 2008. Vol. 349. P. 198-203.

20. D.G. Lima, V.C.V. Soares, E.B. Ribeiro, D.A. Caravalho, E.C.V. Cardoso, F.C. Rassi, K.C. Mundim, J.C. Rubim, P.A.Z. Suarez. Diesel-like fuel obtained by pyrolysis of vegetable oils. J. of Analytical and Applied Pyrolysis. 2004. №71. P. 987—996.

21. Hamze H., Akia M., Yazdani F. Optimization of biodiesel production from the waste cooking oil using response surface methodology. Process Saf Environ Prot. 2015. Vol.94. P. 1–10.

22. Gurunathan B., Ravi A. Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst. Bioresour Technol. 2015. Vol. 88. P. 124–127.

23. Maneerung T., Kawi S., Dai Y., Wang C.-H. Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Convers Manage. 2016. V. 123. P. 487–97.

24. Nisar J., Razaq R., Farooq M., Iqbal M., Khan R.A., Sayed M., et al. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renew Energy. 2017. V. 101. P. 111–119.

25. Tshizanga N., Aransiola E.F., Oyekola O. Optimisation of biodiesel production from waste vegetable oil and eggshell ash. South African. J Chem Eng. 2017. V. 23. P. 145–156.

26. Roschat W., Phewphong S., Khunchalee J., Moonsin P. Biodiesel production by ethanolysis of palm oil using SrO as a basic heterogeneous catalyst. Mater Today. 2018 V. 5. P. 13916–13921.

27. Keera S.T., El Sabagh S.M., Taman A.R. Castor oil biodiesel production and optimization. Egypt J Pet. 2018. Vol. 27. P. 979–984.

28. Elango R.K., Sathiasivan K., Muthukumaran C., Thangavelu V., Rajesh M, Tamilarasan K. Transesterification of castor oil for biodiesel production: process optimization and characterization. Microchem J. 2019. Vol. 145. P. 1162–1168.

29. Nayak M.G., Vyas A.P. Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology. Renew Energy. 2019. Vol. 138. P. 18–28.

30. Anwar M., Rasul M., Ashwath N. Optimization of biodiesel production from stone fruit kernel oil. Energy Procedia. 2019. Vol. 160. P. 268–276.

31. Kashyap S.S., Gogate P.R., Joshi S.M. Ultrasound assisted intensified production of biodiesel from sustainable source as karanja oil using interesterification based on heterogeneous catalyst (γ-alumina). Chem Eng Process Intensif. 2019. V. 136. P. 11–16.

32. Ambat I., Srivastava V., Haapaniemi E., Sillanpää M. Nano-magnetic potassium impregnated ceria as catalyst for the biodiesel production. Renew Energy. 2019. V. 139. P. 1428–1436.

33. S. Saka, D. Kusdiana. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel. 2001. №80. P. 225-231.

34. Kusdiana D., Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology. 2004. V. 91. P. 289–295.

35. Demirbas A. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management. 2009. V. 50. P. 923–927.

36. Kusdiana D., Saka S. Methyl esterification of free fatty acids of rapeseed oil as treated in supercritical methahol. J. Chem. Eng. Jpn. 2001. V.34. №3. Р. 383-387.

37. De Boer K., Bahri P.A. Supercritical methanol for fatty acid methyl ester production: a review. Biomass Bioenergy. 2011. V. 35. P. 989–991.

38. Warabi Y., Kusdiana D., Saka S. Reactivity of triglicerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technology. 2004. V. 91. P. 283-287.

39. I. Vieitez, C. da Silva, I. Alckmin, G. R. Borges, F. C. Corazza, J. V. Oliveira, M. A. Grompone, I. Jachmaniaґn. Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures. Renewable Energy. 2010. №35. P. 1976–1981.

40. West A.H., Posarac D., Ellis N. Assessment of four biodiesel production processes using HYSYS Plant. Bioresource Technology. 2008. V. 99. P. 6587–6601.

41. Kusdiana D, Saka S. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel. 2001. V. 80(5). P. 693–698.

42. Biktashev Sh.A., Usmanov R.A., Gabitov R.R., Gazizov R.A., Gumerov F.M., Gabitov F.R., Abdulagatov I.M., Yarullin R.S., Yakushev I.A. Transesterification of rapeseed and palm oils in supercritical methanol and ethanol. Biomass Bioenergy. 2011. V. 35. P. 2999–3011.

43. Усманов Р.А., Габитов Р.Р., Бикташев Ш.А., Шамсетдинов Ф.Н., Гумеров Ф.М., Габитов Ф.Р., Зарипов З.И., Газизов Р.А., Яруллин Р.С., ЯкушевИ.А. Пилотная установка для непрерывной переэтерификации растительных масел в среде сверхкритического метанола и этанола // Сверхкритические Флюиды. Теория и практика. 2011. Т. 6. №3. С. 45-61.

44. Imahara H., Minami E., Hari S., Saka S. Thermal stability of biodiesel in supercritical methanol. Fuel. 2008. V. 87. P. 1-6.

45. Bunyakiat K., Makmee S., Sawangkeaw R., Ngamprasertsith S. Continuous production of biodiesel via transesterification from vegetable oils in supercritical methanol. Energy and Fuels. 2006. V. 20. № 2. Р. 812-817.

46. Ferenc E. Kiss, Radoslav D. Micic, Milan D. Tomic, Emilija B. Nikolic-Djoric, Mirko D. Simikic. Supercritical transesterification: Impact of different types of alcoholon biodiesel yield and LCA results. J. of Supercritical Fluids. 2014. № 86. P. 23– 32.

47. P. Andreo-Martínez, N. García-Martínez, M. Durán-del-Amor, J. Quesada-Medina. Advances on kinetics and thermodynamics of non-catalytic supercritical methanol transesterification of some vegetable oils to biodiesel. Energy Conversion and Management. 2018. V. 173. P. 187-196.

48. Dung Hoang, Samir Bensaid, Guido Saracco, Raffaele Pirone and Debora Fino. Investigation on the conversion of rapeseed oil via supercritical ethanol condition in the presence of a heterogeneous catalyst. Green Process Synth. 2017. V. 6. P. 91–101.

49. Anitescu G., Deshpande A., Tavlarides L.L. Integrated technology for supercritical biodiesel production and power cogeneration. Energy Fuels. 2008. V. 22. P. 1391-1399.

50. Гумеров Ф.М., Усманов Р.А., Габитов Р.Р., Бикташев Ш.А., Габитов Ф.Р., Яруллин Р.С., Якушев И.А. Реализация процесса непрерывной переэтерификаци и растительных масел в сверхкритических флюидных средах. Бутлеровские сообщения. 2011. Т. 25. № 6. С. 1-12.

51. F.M. Gumerov, R.A. Usmanov and others (21 authors). Biodiesel fuel. Transesterification in supercritical conditions. Kazan: Publishing House "Innovative Publishing House" Butlerov Heritage. 2017, 360 p.

52. Нагорнов С.А., Романцова С.В., Дворецкий С.И., Таров В.П., Рязанцева И.А., Малахов К.С. Исследование кинетики процесса метанолиза при переработке растительного сырья в биотопливо // Вестник ТГТУ. 2009. №3 (15). C. 245.

53. S.X. Tan, S. Lim, H.C. Ong, Y.L. Pang. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel. 2019. V. 235. P. 886-907.

54. Stavarache C., Vinatoru M., Maeda Y. Aspect of ultrasonically assisted transesterification of various vegetable oils with methanol. Ultrason. Sonochem. 2007. V. 14. P. 380–386.

55. Omotola B., Leslie P., Bamikole A., Farouk A. Low-Cost feedstock conversion to biodiesel via ultrasound technology. Energies. 2009. V. 3. P. 1691–1703.

56. Kumar D., Kumar G., Poonam Singh C.P. Ultrasonic-assisted transeterification of jatropha oil using solid catalyst, Na/SiO2. Ultrason. Sonochem. 2010. V. 17. P. 839–844.

57. Stavarache C., Vinatoru M., Nishimura R., Maeda Y. Conversion of vegetable oil to Biodiesel using ultrasonic irradiation. Chem. Lett. 2003. V. 32. P. 716–717.

58. Taleyarkhan R.P., Cho J.S., West C.D., Nigmatulin R.I., Block R.C. Additional evidence of nuclear emissions during acoustic cavitation. Phys. Rev. 2004. V. 69. P. 361–369.

59. Encinar J.M., González J.F., Rodríguez J.J., Tejedor A. Biodiesel fuels from vegetable oils: Transesterification of Cynara cardunculus L. Oils with Ethanol. Energy Fuels. 2002. V. 16. P. 443–450.

60. Encinar J.M., Juan F., Gonzalez J.F., Rodriguez J.R. Biodiesel from Used Frying oil: Variables Affecting the Yields and Characteristics of the Biodiesel. Ind. Eng. Chem. Res. 2005. Vol. 44. P. 5491–5499.

61. Kumar D., Kumar G., Poonam Singh C.P. Fast, easy ethanolysis of coconut oil for biodiesel production assisted by ultrasonication. Ultrason. Sonochem. 2010. V. 17. P. 555–559.

62. Martinez-Guerra E., Gude V.G. Determining optimum pulse mode for ultrasound enhanced biodiesel production. J. Ind. Eng. Chem. 2016. V. 35. P. 14–19.

63. Singh A.K., Fernando S.D., Hernandez R. Base-catalyzed fast transesterification of soybean oil using ultrasonication. Energy Fuels. 2007. V. 21. P. 1161–1164.

64. Cao W., Han H., Zhang J. Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel. 2005. V. 84. P. 347–351.

65. Han H., Cao W., Zhang J. Preparation of biodiesel from soybean oil using supercritical methanol and CO 2 as co-solvent. Process Biochemistry. 2005. V. 40. P. 3148–3151.

66. Fernanda Wariss Figueiredo Bezerra, Wanessa Almeida da Costa, Mozaniel Santana de Oliveira, Eloisa Helena de Aguiar Andrade, Raul Nunes de Carvalho Junior. Transesterification of Palm Pressed-Fibers (Elaeis guineensis Jacq.) Oil by Supercritical Fluid Carbon Dioxide with Entrainer Ethanol. J. of Supercritical Fluids. 2018. V. 136. P. 136-143.

67. Van Kasteren J.M.N., Nisworo A.P. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Res. Conserv. Recycl. 2007. V. 50. № 4. P. 442–458.

68. F.M. Gumerov. Supercritical fluid technology. Economic expediency. Kazan: Publishing House of the Academy of Sciences of the Republic of Tatarstan, 2019. 440 p.

69. Dasari M.A., Goff M.J., Suppes G.J. Noncatalytic alcoholysis kinetics of soybean oil. JAOCS. 2003. V. 80. № 2. Р. 189-192.

70. Sakai T., Kawashima A., Koshikawa T. Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts. Bioresour. Technol. 2009. №100. P. 3268–3276.

71. Ebiura T., Echizen T., Ishikawa A., Kazuhito M., Baba T. Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst. Appl. Catal. A: Gen. 2005. №283. P. 111–116.

72. Fabbri D., Bevoni V., Notari M., Rivetti F. Properties of a potential biofuel obtained from soybean oil by transmethylation with dimethyl carbonate. Fuel. 2007. №86. P. 690–697.

73. Wang L., Yang J. Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel. 2007. №86. P. 328–333.

74. Mootabadi H., Salamatinia B., Bhatia S., Abdullah A.Z. Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel. 2010. №89. P. 1818–1825.

75. Salamatinia B., Mootabadi H., Bhatia S., Abdullah A.Z. Optimization of ultrasonicassisted heterogeneous biodiesel production from palm oil: a response surface methodology approach. Fuel Process Technol. 2010. №91. P. 441–448.

76. Vujicic D.J., Comic D., Zarubica A., Micic R., Boskovic G. Kinetics of biodiesel synthesis from sunflower oil over CaO heterogeneous catalyst. Fuel. 2010. №89. P. 2054–2061.

77. Yoosuk B., Udomsap P., Buppa P., Pawnprapa K. Modification of calcite by hydration–dehydration method for heterogeneous biodiesel production process: the effects of water on properties and activity. J. Chem. Eng. 2010. №162. P. 135–141.

78. Yoo S.J., Lee H.S., Bambang V., Kim J., Kim J.D., Lee Y.W. Synthesis of biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts. Bioresour. Technol. 2010. №101. P. 8686–8689.

79. Yang Z., Xie W. Soybean oil transesterification over zinc oxide modified with alkali earth metals. Fuel Process Technol. 2007. №88. P. 631–638.

80. Antunes W.M., Veloso C.O., Henriques C.A. Transesterification of soybean oil with methanol catalyzed by basic solids. Catal. Today. 2008. №133–135. P. 548–554.

81. Hai-xin B., Xiao-Zhen S., Xiao-hua L., Shengyong L. Synthesis of porous CaO microsphere and its application in catalyzing transesterification reaction for biodiesel. Trans. Nonferrous Met. Soc. China. 2009. №19. P. 674–677.

82. Yan S., Salley S.O., Simon K.Y. Simultaneous transesterification and esterification of unrefined or waste oils over ZnO–La2O3 catalysts. Appl. Catal. A: Gen. 2009. №353. P. 203–212.

83. Noiroj K., Intarapong P., Luengnaruemitchai A., Jai-In S. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renew. Energy. 2009. №34. P. 1145–1150.

84. Lukic I., Krstic J., Jovanovic D., Skala D. Alumina/silica supported K2 CO 3 as a catalyst for biodiesel synthesis from sunflower oil. Bioresour. Technol. 2009. №100. P. 4690–4696.

85. Boz N., Degirmenbasi N., Kalyon D.M. Conversion of biomass to fuel: transesterification of vegetable oil to biodiesel using KF loaded nano-g-Al2O3 as catalyst. Appl. Catal. B: Environ. 2009. №89. P. 590–596.

86. Shu Q., Gao J., Nawaz Z., Liao Y., Wang D., Wang J. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon based solid acid catalyst. Appl. Energy. 2010. №87. P. 2589–2596.

87. Baroutian S., Aroua M.K., Abdul Raman A.A., Nik Sulaiman N.M. Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil. Fuel Process Technol. 2010. №91. P. 1378–1385.

88. Marchetti J.M., Errazu A.F. Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid. Fuel. 2008. №87. P. 3477–3480.

89. Ramos M.J., Casas A., Rodriguez L., Romero R., Perez A. Transesterification of sunflower oil over zeolites using different metal loading: a case of leaching and agglomeration studies. Appl. Catal. A: Gen. 2008. №346. P. 79–85.

90. Puna J.F., Gomes J.F., Correia M.J., Soares Dias A.P., Bordado J.C. Advances on the development of novel heterogeneous catalysts for transesterification of triglycerides in biodiesel. Fuel. 2010. №89. P. 3602–3606.

91. Wei Z., Xu C., Li B. Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour. Technol. 2009. №100. P. 2883–2885.

92. Viriya-empikul N., Krasae P., Puttasawat B., Yoosuk B., Chollacoop N., Faungnawakij K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour. Technol. 2010. №101. P. 3765–3767.

93. Chakraborty R., Bepari S., Banerjee A. Application of calcined waste fish (Labeo rohita) scale as low-cost heterogeneous catalyst for biodiesel synthesis. Bioresour. Technol. 2011. №102. P. 3610–3618.

94. Park Y.M., Chung S., Eom H.J., Lee J., Lee K. Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil). Bioresour. Technol. 2010. №101. P. 6589–6593.

95. Liu R., Wang X., Zhao X., Feng P. Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. Carbon. 2008. №46. P. 1664–1669.

96. De Almeida Rusiene M., Noda Lucia K., Goncalves Norberto S., Meneghetti Simoni M.P., Meneghetti Mario R. Transesterification reaction of vegetable oils, using superacid sulfated TiO2–base catalysts. Appl. Catal. A: Gen. 2008. №347. P. 100–105.

97. Juan J.C., Zhang J.C., Yarmo M.A. Structure and reactivity of silica – supported zirconium sulfate for esterification of fatty acid under solvent – free condition. Appl. Catal. A: Gen. 2007. №332. P. 209–215.

98. Holser Ronald A., Doll Kenneth M., Erhan Sevim Z. Metathesis of methyl soyate with ruthenium catalysts. Fuel. 2006. №85. P. 393–395.

99. Alsalme A., Kozhevnikova E.F., Kozhevnikov I.V. Heteropoly acids as catalysts for liquid-phase esterification and transesterification. Appl. Catal. A: Gen. 2008. №349. P. 170–176.

100. Park Y.M., Lee D.W., Kim D.K., Lee J., Lee K.Y. The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catal. Today. 2008. №131. P. 238–243.

101. R. A. Usmanov, F. M. Gumerov, F. R. Gabitov, Z. I. Zaripov, F. N. Shamsetdinov, I. M. Abdulagatov, in Liquid Fuels: Types, Properties and Production. Chap. 3: Nova Science, New York, 2012., p. 99.

102. С.В. Мазанов, Р.А. Усманов, Ф.М. Гумеров. Гетерогенный катализ при получении биодизельного топлива. Изд. LAP Lambert Academic Publishing, - 2017. 189 c.

103. S.V. Mazanov, A.R. Gabitova, R.A. Usmanov, F.M. Gumerov, S. Labidi, M.B. Amar, J-P. Passarello, A. Kanaev, F. Volle, B. Le Neindre. Continuous production of biodiesel from rapeseed oil by ultrasonic assist transesterification in supercritical ethanol. The Journal of Supercritical Fluids. 2016. Vol.118. P. 107–118.

104. F.M. Gumerov, S.V. Mazanov, R.A. Usmanov, A.R. Gabitova, A.I. Kourdioukov, Z.I. Zaripov. Theoretical and Experimental Study of Reaction of Transesterification of Vegetable Oils in an Alcohol Environment in the SbCF and SCF Conditions with the Ultrasonic Emulsification of Reaction Mixture and the Use of Heterogeneous Catalysts. International Journal of Analytical Mass Spectrometry and Chromatography. 2017. №5. Р. 40-55.

105. С.В. Мазанов, А.Р. Габитова, Л.Х. Мифтахова, Р.А. Усманов, Ф.М. Гумеров, З.И. Зарипов, В.А. Васильев, Э.А. Каралин. Получение биодизельного топлива в сверхкритических флюидных условиях с использованием гетерогенных катализаторов // Сверхкритические Флюиды: Теория и Практика. 2015. Т .10. №2. С. 71-83.

106. С.В. Мазанов, Р.А. Усманов, Ф.М. Гумеров, Э.А. Каралин, В.А. Васильев, Р.З. Мусин. Трансэтерификация рапсового масла в среде этанола в сверхкритических флюидных условиях в проточном реакторе в присутствии гетерогенного катализатора // Известия вузов. Прикладная химия и биотехнология. 2014. №5. С. 14-24.

107. С.В. Мазанов, Р.А. Усманов, Р.Д. Амирханов, Ф.М. Гумеров. Экспериментальное исследование процесса получения биодизельного топлива в сверхкритических флюидных условиях // Проблемы энергетики. 2017. №1-2. С. 41-51.

108. S.V. Mazanov, A.R. Gabitova, L.H. Miftahova, R.A. Usmanov, F.M. Gumerov, Z.I. Zaripov, V.A. Vasil’ev, E.A. Karalyn. Preparing biodiesel fuel in supercritical fluid conditions with heterogeneous catalysts. Russian Journal of Physical Chemistry B. 2016. Vol. 10. №7. Р. 1099–1107.

109. Мазанов С.В., Усманов Р.А., Куагу Ж.М., Ункпатэн Д.Д., Фонкоу М.Д., Гумеров Ф.М., Зарипов З.И., Шаповалов Ю.А., Наурызбаев М.К. Экспериментальное исследование некаталитической и каталитической реакции переэтерификации рапсового масла в сверхкритических флюидных условиях на установке проточного типа // Промышленность Казахстана. 2019. №1(105). С. 90-92.

110. Neha Lamba, Rimzhim Gupta, Jayant M. Modak, Giridhar Madras. ZnO catalyzed transesterification of Madhuca indica oil in supercritical Methanol. Fuel. 2019. Vol. 242. P. 323–333.

111. Demirbas A. Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Conversion and Management. 2007. Vol. 48. P. 937–941.

112. В.Б.Вольева, И.С.Белостоцкая, Н.Л.Комиссарова, Е.В.Коверзанова, Л.Н.Курковская, Р.А.Усманов, Ф.М.Гумеров. Биодизель без свободного глицерина // ЖОХ. 2015. Т. 51. №7. С. 935.

113. Mushrush G.W., Beal E.J., Hardy D.R., Hughes J.M Cummings J.C. Jet Fuel System Icing Inhibitors: Synthesis and Characterization. Ind. Eng. Chem. Res. 1999. Vol. 38. P. 2497.

114. Varfolomeev S.D., Gladchenko M.A., Gaydamaka S.N., Murygina V.P., Volieva V.B., Komissarova N.L., Gumerov F.M., Usmanov R.A., Koversanova E.V. Biocatalytic Conversion of Lignocellulose Materials to Fatty Acids and Ethanol with Subsequent Esterification. Monograrh. Chemistry and Technology of plant substances. Chemical and Biochemical Aspects (Chapter 6): Apple Academic Press. Part I, 2017. - P.111-133.

115. J. George, Y. Patel, S.M. Pillai, P. Munshi. Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst. J. Mol. Catal. Chem. 2009. Vol. 304. P. 1-7.

116. J.R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, B. Maestro-Madurga, A. Pesquera-Rodríguez, C. Ramírez-López, L. Lorenzo-Ibarreta. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization. Appl. Catal. A: Gen. 2009. Vol. 366. P. 315-324.

117. M. Malyaadri, K. Jagadeeswaraiah, P.S. Sai Prasad, N. Lingaiah. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts. Appl. Catal. A: Gen. 2011. Vol. 401. P. 153-157.

118. L. Li, T.I. Koranyi, B.F. Sels, P.P. Pescarmona. Highly-efficient conversion of glycerol to solketal over heterogeneous Lewis acid catalysts. Green Chem. 2012. Vol. 14. P. 1611-1619.

119. N. Suriyaprapadilok, B. Kitiyanan. Synthesis of Solketal from Glycerol and Its Reaction with Benzyl Alcohol. Energy Procedia. 2011. Vol. 9. P. 63-69.

120. J.R. Dodson, T.d.C.M. Leite, N. S. Pontes, B. Peres Pinto, C.J.A. Mota. Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a biodiesel fuel additive. ChemSusChem. 2014. Vol. 7. P. 2728-2734.

121. R. Rodrigues, M. Goncalves, D. Mandelli, P.P. Pescarmona, W.A. Carvalho. Solventfree conversion of glycerol to solketal catalysed by activated carbons functionalised with acid groups. Catal. Sci. Technol. 2014. Vol. 4. P. 2293-2301.

122. Valentine C. Eze, Adam P. Harvey. Continuous Reactive Coupling of Glycerol and Acetone – a Strategy for Triglyceride Transesterification and In-situ Valorisation of Glycerol by-product. Chemical Engineering Journal. 2018. Vol. 347. P. 41-51

123. C.X.A. da Silva, C.J.A. Mota. The influence of impurities on the acid-catalyzed reaction of glycerol with acetone. Biomass Bioenergy. 2011. Vol. 35. P. 3547-3551.

124. M.R. Nanda, Z. Yuan, W. Qin, H.S. Ghaziaskar, M.A. Poirier, C. Xu. Catalytic conversion of glycerol to oxygenated fuel additive in a continuous flow reactor: process optimization. Fuel. 2014. Vol. 128. P. 113-119.

125. Olivares-Carrillo P., Quesada-Medina J. Thermal decomposition of fatty acid chains during the supercritical methanol transesterification of soybean oil to biodiesel. Journal of supercritical fluids. 2012. №72. P. 52– 58.

126. Vieitez I., Silva C., Alckmin I., Borges G.R., Corazza F.C., Oliveira J.V., Grompone M.A., Jachmanian I. Effect of temperature on the continuous synthesis of soybean esters under supercritical ethanol. Energy and Fuels. 2009. №23. P. 558–563.

127. Hee-Yong Shin, Seon-Muk Lim, Seong-Youl Bae, Sea Cheon Oh. Thermal decomposition and stability of fatty acid methyl esters in supercritical methanol. Journal of analytical and applied pyrolysis. 2011. №92. P. 332–338.

128. Aimaretti N., Manuale D.L., Mazzieri V.M., Vera C.R, Yori J.C. Batch study of glycerol decomposition in one-stage supercritical production of biodiesel. Energy and Fuels. 2009. №23. Р. 1076–1080.

129. Marulanda V.F., Anitescu G., Tavlarides L.L. Investigations on supercritical transesterification of chicken fat for biodiesel production from low-cost lipid feedstocks. J. of Supercritical Fluids. 2010. №54. P. 53–60.

130. Chen J., Li J., Dong W., Zhang X., Tyagi R.D., Drogui P. The potential of microalgae in biodiesel production. Renew Sustain Energy Rev. 2018. V. 90. P. 336–346.

131. Goh B.H.H., Ong H.C., Cheah M.Y., Chen W.-H., Yu K.L., Mahlia T.M.I. Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sustain Energy Rev. 2019. Vol.107. P. 59–74.

132. H.T. Siow, I. Aminul, H.T. Yun. Algae derived biodiesel using nanocatalytic transesterification process. Chem. Eng. Res. Design. 2016. Vol. 111. P. 362–370.

133. P. De Filipis, C. Giavarini, M. Scarsella, M. Sorrentino, Transesterification processes for vegetable oils: a simple control method of methyl ester content. Journal of the American Oil Chemists Society. 1995. Vol. 72. P. 1399–1404.

134. F.P. Sousa, M.A. Luciano, V.M.D. Pasa. Thermogravimetry and viscometry for assessing the ester content (FAME and FAEE). Fuel Process. Technol. 2013. V. 109. P. 133–140.

135. R.A. Usmanov, S.V. Mazanov, A.R. Gabitova, L.Kh. Miftakhova, F.M. Gumerov, R.Z. Musin, I.M. Abdulagatov. The effect of fatty acid ethyl esters concentration on the kinematic viscosity of biodiesel fuel. J. Chem. Eng. Data. 2015. V. 60. №11. P. 3404-3413.

136. A.R. Gabitova, S.V. Mazanov, R.A. Usmanov, Z.I. Zaripov, F.M. Gumerov, I.M. Abdulagatov. Viscometry as a method for determining concentration of fatty acid ethyl esters in biodiesel fuel. Chemistry and Technology of Fuels and Oils. 2017. V.53. №1. P. 77-86.

137. А.Р. Габитова, С.В. Мазанов, Р.А. Усманов, З.И. Зарипов, Ф.М. Гумеров, И.М. Абдулагатов. Вискозиметрия как метод определения концентрации этиловых эфиров жирных кислот в биодизельном топливе // Химия и технология топлив и масел. 2017. №1. С. 47-51.

138. M.E. Borges, L. Díaz, J. Gavín, A. Brito. Estimation of the content of fatty acid methyl esters (FAME) in biodiesel samples from dynamic viscosity measurements. Fuel Processing Technology. 2011. V. 92. P. 597–599.

139. G. Knothe, K.R. Steidley. Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures. Fuel. 2007. V. 86. P. 2560–2567.

140. D. Valeri, A.J.A. Meirelles. Viscosities of fatty acids, triglycerides, and their binary mixtures. JAOCS. 1997. V. 10. P. 1221-1226.

141. D. Kusdiana, S. Saka. Two-step preparation for catalyst-free biodiesel production: hydrolysis and methyl esterification. Applied Biochem, Biotechnol. 2004. V.113. №1. P. 781-791.

142. D’Ippolito S.A., Yori J.C., Iturria M.E., Pieck C.L., Vera C.R. Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery. Energy Fuels. 2007. V. 21. P. 339-346.

143. Minami, E. Saka, S. Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel. 2006. V. 85(17-18). P. 2479-2483.

144. Z. Ilham, S. Saka. Two-step supercritical dimethyl carbonate method for biodiesel production from Jatropha curcas oil. Bioresource Technology. 2010. V. 101. № 8. P. 2735-2740.

145. Y. Sugami, E. Minami, S. Saka. Renewable diesel production from rapeseed oil with hydrothermal hydrogenation and subsequent decarboxylation. Fuel. 2016. V. 166. P. 376-381.

146. F.L. Martinovic, F.E. Kiss, R.D. Micic, M.Ð. Simikić, M.D. Tomić. Comparative techno-economic analysis of single-step and two-step biodiesel production with supercritical methanol based on process simulation. Chemical Engineering Research and Design. 2018. V. 132. P. 751-765.


Рецензия

Для цитирования:


Мазанов С.В., Гумеров Ф.М., Усманов Р.А., Габитова А.Р., Зарипов З.И., Варфоломеев С.Д., Вольева В.Б., Шаповалов Ю.А. Биодизельное топливо. Часть I. Способы получения. Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2022;24(4):16-49. https://doi.org/10.30724/1998-9903-2022-24-4-16-49

For citation:


Mazanov S.V., Gumerov F.M., Usmanov R.A., Gabitova A.R., Zaripov Z.I., Varfolomeev S.D., Vol'eva V.B., Shapovalov Yu.A. Biodiesel fuel. Part I. Methods of obtaining. Power engineering: research, equipment, technology. 2022;24(4):16-49. (In Russ.) https://doi.org/10.30724/1998-9903-2022-24-4-16-49

Просмотров: 538


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)