Preview

Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ

Расширенный поиск

Биодизельное топливо. ЧАСТЬ II. теплофизические свойства систем, участвующих в процессе получения биодизельного топлива с использованием рабочих сред в сверхкритическом флюидном состоянии

https://doi.org/10.30724/1998-9903-2022-24-5-35-60

Аннотация

ЦЕЛЬ. Цель работы заключалась в систематизации результатов работ отечественных и иностранных авторов по теплофизическим свойствам сред и веществ, участвующих в процессе получения биодизельного топлива.
МЕТОДЫ. Для измерения изобарной теплоемкости преимущественное использование отдано методам теплопроводящего и сканирующего калориметров, измерение коэффициента теплопроводности методом нагретой нити. Кинематическая и динамическая вязкости измерены, соответственно, на стандартных стеклянных вискозиметрах при атмосферном давлении и по методу падающего груза.
РЕЗУЛЬТАТЫ. Приведены результаты исследования широкого спектра теплофизических свойств термодинамических систем, участвующих в процессе получения биодизельного топлива в сверхкритических флюидных условиях. Внимание уделено плотности, изобарной теплоемкости, теплопроводности, динамической и кинематической вязкости как исходного сырья, так и получаемого биодизельного топлива, представленные в широком диапазоне изменения температур и давлений, включая околокритическую, а также при учете тепловых эффектов, вызванных растворением и изменением структур веществ под воздействием флюидного реагента.
ЗАКЛЮЧЕНИЕ. Представленные данные будут необходимы на этапах проектирования и масштабирования той или иной технологии по получению биодизельного топлива, как в лабораторных масштабах, так и на промышленном уровне.

Об авторах

С. В. Мазанов
Казанский национальный исследовательский технологический университет
Россия

Мазанов Сергей Валерьевич – канд. техн. наук

Казань



З. И. Зарипов
Казанский национальный исследовательский технологический университет
Россия

Зарипов Зуфар Ибрагимович – д-р техн. наук

Казань



Ф. М. Гумеров
Казанский национальный исследовательский технологический университет
Россия

Гумеров Фарид Мухамедович – д-р техн. наук 

Казань



Р. А. Усманов
Казанский национальный исследовательский технологический университет
Россия

Усманов Рустем Айтуганович – д-р техн. наук 

Казань



Ю. А. Шаповалов
Казахский национальный университет им. аль-Фараби
Казахстан

Шаповалов Юрий Александрович – д-р техн. наук

Алматы



Список литературы

1. Мазанов С.В., Гумеров Ф.М., Усманов Р.А., Габитова А.Р., Зарипов З.И., Варфоломеев С.Д., Вольева В.Б., Шаповалов Ю.А. Биодизельное топливо. Часть I. Способы получения // Проблемы энергетики. 2022. Т. 24. № 4. С. 16-49.

2. John N. Coupland, D. Julian McClements. Physical Properties of Liquid Edible Oils. JAOCS. 1997. Vol. 74. P. 1559–1564.

3. Noureddini B.C., Teoh L.H. Densities of Vegetable Oils and Fatty Acids. JAOCS. 1992. Vol. 69. № 12. P. 1184-1188.

4. J.D. Halvorsen, W.C. Mammel, Jr., L.D. Clements. Density Estimation for Fatty Acids and Vegetable Oils Based on Their Fatty Acid Composition. 1993. JAOCS. Vol. 70. № 9. P. 875- 880.

5. D. Rudan-Tasic, C. Klofutar. Characteristics of vegetable oils of some slovene manufacturers. Acta Chim. Slov. 1999. V. 46(4). P. 511-521.

6. Rodenbush C.M., Hsieh F.H., Viswanath D.D. Density and viscosity of vegetable oils. Journal of the American Oil Chemist Society. 1999. Vol. 76. P. 1415-1419.

7. Bernat Esteban, Jordi-Roger Riba, Grau Baquero, Antoni Rius, Rita Puig. Temperature dependence of density and viscosity of vegetable oils. Biomass and bioenergy. 2012. Vol. 42. P. 164 -171.

8. S.P. Koh, C.P. Tan, N. Arifin, M.S.A. Yusoff, K. LonG, O.M. Lai. Thermal and viscosity properties of medium- and long-chain triacylglycerol blends. Journal of Food Lipids. 2009. Vol. 16. P. 569–588.

9. Andrei Ionuţ Simion, Cristina-Gabriela Grigoraş, Lucian Gheorghe Gavrilă Annals. Mathematical modelling of ten vegetable oils thermophysical properties. study of density and viscosity. Food Science and Technology. 2014. Vol. 15. № 2. P. 371-386.

10. G.M. Acosta, R.L. Smith, Jr., K. Arai. High-Pressure PVT Behavior of Natural Fats and Oils, Trilaurin, Triolein, and n-Tridecane from 303 K to 353 K from Atmospheric Pressure to 150 MPa. J. Chem. Eng. Data. 1996. Vol. 41. P. 961-969.

11. Safarov M.M., Usupov S, Tagoev S. Thermophysical properties of vegetable oils in a wide range of temperatures and pressures. High Temp High Pres. 1999. Vol. 31. P. 43–48.

12. Werner M., Baars A., Eder C., Delgado A. Thermal conductivity and density of plant oils under high pressure. J Chem Eng Data. 2008. Vol. 53 P. 1444–1452.

13. Bérengère Guignon, Cristina Aparicio, Pedro D. Sanz. Volumetric properties of sunflower and olive oils at temperatures between 15 and 55 ºC under pressures up to 350 MPa. High Pressure Research. 2009. Vol. 29. № 1. 2009. P. 38–45.

14. S.V.D. Freitas, F.A. Silva, M.J. Pastoriza-Gallego, M.M. Pi eiro, .S. Lima, J.A.P. Coutinho. Measurement and Prediction of Densities of Vegetable Oils at Pressures up to 45 MPa. J. Chem. Eng. Data. 2013. Vol. 58. P. 3046−3053.

15. Rackett H.G. Eqution of state for satureted liquids. J. Chem. Eng. Data. 1970. Vol. 15. P. 514.

16. Dymond J.H., Malhotra R. The Tait equation: 100 years on. Int. J. Thermophys. 1988. Vol. 9. P. 941–951.

17. Kim C., Vimalchand P., Donohue M.D., Sandler S.I. Local Composition Model for Chainlike Molecules: A New Simplified Version of the Perturbed Hard Chain Theory. AIChE J. 1986. Vol. 32 (1). P. 1726-1734.

18. Torres-Jimenez E., Svoljšak-Jerman M., Gregorc A., Lisec I., Dorado M.P., Kegl B. Physical and chemical properties of ethanol–biodiesel blends for diesel engines. Energy Fuels. 2010. Vol. 24. P. 2002–2009.

19. Enweremadu C.C., Alamu O.J. Development and characterization of biodiesel from shea nut butter. Int Agrophys. 2010. Vol. 24. P. 29–34.

20. Alptekin E., Canakci M. Characterization of the key fuel properties of methyl ester–diesel fuel blends. Fuel. 2009. Vol. 88. P. 75–80.

21. Alptekin E., Canakci M. Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renew Energy. 2008. Vol. 33. P. 2623–2630.

22. Doll K.M., Sharma B.K., Suarez P.A.Z., Erhan S.Z. Comparing biofuels obtained from pyrolysis, of soybean oil or soapstock, with traditional soybean biodiesel: density, kinematic viscosity, and surface tensions. Energy Fuels. 2008. Vol. 22. P. 2061–2066.

23. Santos I.C.F., de Carvalho S.H.V., Solleti J.I., Ferreira de La Salles W., Teixeira da Silva de La Salles K., Meneghetti S.M.P. Studies of Terminalia catappa l. oil: characterization and biodiesel production. Biores Technol. 2008. Vol. 99. P. 6545–6549.

24. Tiwari A.K., Kumar A., Raheman H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy. 2007. Vol. 31. P. 569–575.

25. Baroutian S., Aroua M.K., Raman A.A.A., Sulaiman N.M.N. Viscosities and densities of binary and ternary blends of palm oil + palm biodiesel + diesel fuel at different temperatures. J Chem Eng Data. 2010. Vol. 55. P. 504–507.

26. Mariceli da Silva Machado, Virginia Coimbra Zuvanov, Edwin Elard Garcia Rojas, Abraham Damian Giraldo Zuniga, Bernardo de Sá Costa. Thermophysical properties of biodiesel obtained from vegetable oils: corn, soy, canola and sunflower. Enciclopédia biosfera. Centro Científico Conhecer – Goiânia. 2012. Vol.8. № 14. P. 917-924.

27. Huber M.L., Lemmon E.W., Kazakov A., Ott L.S., Bruno T.J. Model for the thermodynamic properties of a biodiesel fuel. Energy Fuels. 2009. Vol. 23. P. 3790–3797.

28. Baroutian S., Aroua M.K., Raman A.A.A., Sulaiman N.M.N. Density of palm oilbased methyl ester. J Chem Eng Data. 2008. Vol. 53. P. 877–880.

29. Tat ME, Gerpen JH. Measurement of Biodiesel Speed of Sound and Its Impact on Injection Timing. National Renewable Energy Laboratory 2003; NREL/SR-510-31462.

30. Pratas M.J., Oliveira M.B., Pastoriza-Gallego M.J., Queimada A.J., Pineiro M.M., Coutinho J.A.P. High-Pressure Biodiesel Density: Experimental Measurements, Correlation, and Cubic-Plus-Association Equation of State (CPA EoS) Modeling. Energy Fuels. 2011. Vol. 25. P. 3806–3814.

31. Tat M.E., Van Gerpen J.H. Speed of Sound and Isentropic Bulk Modulus of Alkyl Monoesters at Elevated Temperatures and Pressures. J Am Oil Chem Soc. 2003. Vol. 80. P. 1249- 1256.

32. P.A. Giuliano Albo, S. Lago, H. Wolf, R. Pagel, N. Glen, M. Clerck, P. Ballereau. Density, viscosity and specific heat capacity of diesel blends with rapeseed and soybean oil methyl ester. Biomass and Bioenergy. 2017. Vol. 96. P. 87-95.

33. Sofija P. Miškov, Gorica R. Ivaniš, Ivona R. Radović, Mirjana L. Kijevčanin. High pressure densities and derived properties of biodiesel fuel produced by heterogeneous transesterification from biowaste. Thermal science. 2019. Vol. 23. P. S1757-S1768.

34. Nikolić B.D., Kegl B., Marcović S.D., Mitrović M.S. Determining the speed of sound, density and bulk modulus of rapeseed oil, biodiesel and diesel fuel. Therm Science. 2012. Vol. 16. P. S569-S579.

35. Aparicio C., Guignon B., Rodriguez-Anton L.M., Sanz P.D. Determination of Rapseed Methyl Ester Oil Volumetric Properties in High Pressure (0.1 to 350 MPa). J. Therm. Anal. Calorim. 2007. Vol. 89. P. 13–19.

36. Dzida M., Prusakiewicz P. The effect of temperature and pressure on thephysicochemical properties of petroleum diesel oil and biodiesel fuel. Fuel. 2008. Vol. 87. P. 1941–1948.

37. Chhetri A.B., Watts K.C. Densities of canola, jatropha and soapnut biodiesel at elevated temperatures and pressures. Fuel. 2012. Vol. 99. P. 210–216.

38. Schedemann A., Wallek T., Zeymer M., Maly M., Gmehling J. Measurement and correlation of biodiesel densities at pressures up to 130 MPa. Fuel. 2013. Vol. 107. P. 483–492.

39. Kontogeorgis G.M., Michelsen M.L., Folas G.K., Derawi S., von Solms N., Stenby E.H. Ten years with the CPA (Cubic-Plus-Association) Equation of State Part I (Pure Compounds and Self-Associating System). Ind. Eng. Chem. Res. 2006. Vol. 45. P. 4855–4868.

40. Kontogeorgis G.M., Michelsen M.L., Folas G.K., Derawi S., von Solms N., Stenby E.H. Ten years with the CPA (Cubic-Plus-Association) Equation of State Part II (CrossAssociating and Multicomponents System). Ind. Eng. Chem. Res. 2006. Vol. 45. P. 4869–4878.

41. Weidlich U., Gmehling J. A modified UNIFAC model. 1. Prediction of VLE, hE, and gamma infinite. Ind Eng Chem Res. 1987. Vol. 26(7). P. 1372–1381.

42. Schmid B., Gmehling J. From van der Waals to VTPR: the systematic improvement of the van der Waals equation of state. J Supercritical Fluids. 2010. Vol. 55. P. 438–447.

43. Oliveira M.B., Freitas S.V.D., Llovell F., Vega L.F., Coutinho J.A.P. Development of simple and transferable molecular models for biodiesel production with the soft-SAFT equation of state. Chemical Engineering Research and Design. 2014. Vol. 92. P. 2898-2911.

44. Dong N.H., Thuy N.T., Tho V.D.S. Predicting the temperature/pressure dependent density of biodiesel fuels. Petrovietnam J. 2012. Vol. 10. P. 46-58.

45. Pratas M.J., Freitas S.V.D., Oliveira M.B., Monteiro S.C., Lima A.S., Coutinho J.A.P. Biodiesel Density: Experimental Measurements and Prediction Models. Energy Fuels. 2011. Vol. 25. P. 2333–2340.

46. Meng X., Jia M., Wang T. Predicting biodiesel densities over a wide temperature range up to 523 K. Fuel. 2013. Vol. 111. P. 216–222.

47. Spencer C.F., Danner R.P. Improved equation for prediction of saturated liquid density. J Chem Eng Data. 1972. Vol. 17. P. 236–241.

48. N.M.C. Talavera-Prieto, A.G.M. Ferreira, A.T.G. Portugal, R.J. Moreira, J.B. Santos. Correlation and Prediction of Biodiesel Density. World Academy of Science, Engineering and Technology International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering. 2014. Vol. 8. No 12. P. 1303-1312.

49. Ndiaye H.I., Habrioux M., Coutinho J.A.P., Paredes M.L.L., Daridon J.L. Speed of sound, density, and derivative properties of ethyl myristate, methyl myristate, and methyl palmitate under high pressure. J. Chem. Eng. Data. 2013. Vol. 58. P. 1371-1377.

50. Outcalt S.L. Compressed-liquid density measurements of methyl oleate and methyl linoleate. J. Chem. Eng. Data. 2011. Vol. 56. P. 4239-4243.

51. Carl Schaschke, Isobel Fletcher, Norman Glen. Density and Viscosity Measurement of Diesel Fuels at Combined High Pressure and Elevated Temperature. Processes. 2013. Vol. 1. P. 30-48.

52. Felipe A. Perdomo, Beatriz M. Millan, Jos L. Aragon. Predicting the physicalechemical properties of biodiesel fuels assessing the molecular structure with the SAFT group contribution approach. Energy. 2014. Vol. 72. P. 274-290.

53. Hegel P., Mabe G., Pereda S., Brignole E.A. Phase Transitions in a Biodiesel Reactor Using Supercritical Methanol. Ind. Eng. Chem. Res. 2007. Vol. 46. P. 6360.

54. A. Velez, P. Hegel, G. Mabe, E. A. Brignole. Density and Conversion in Biodiesel Production with Supercritical Methanol. Ind. Eng. Chem. Res. 2010. Vol. 49. P. 7666-7670.

55. A.Velez, G. Soto, P. Hegel, G. Mabe, S. Pereda. Continuous production of fatty acid ethyl esters from sunflower oil using supercritical ethanol. Fuel. 2012. Vol. 97. P. 703–709.

56. Cholada Komintarachat, Ruengwit Sawangkeaw, Somkiat Ngamprasertsith. Density Determination of Ethyl Acetate-Palm Oil Mixture in Supercritical Condition. Engineering journal. 2014. Vol. 19. № 2. P. 29-39.

57. Winatta Sakdasri, Ruengwit Sawangkeaw, Yaocihuatl Medina-Gonzalez, Séverine Camy, Jean-Stéphane Condoret, Somkiat Ngamprasertsith. Experimental Study and Modeling of Phase Equilibrium of the Methanol–Tripalmitin System: Application to Palm Oil Transesterification with Supercritical Methanol. Industrial & Engineering Chemistry Research. 2016. Vol. 55. P. 5190-5199.

58. István Barabás. Liquid densities and excess molar volumes of ethanol+biodiesel binary system between the temperatures 273.15 K and 333.15 K. Journal of Molecular Liquids. 2015. Vol. 204. P. 95-99.

59. Natalia S. Cotabarren, Alexis R. Velez, Pablo E. Hegel, and Selva Pereda. Prediction of Volumetric Data in Supercritical Reactors. J. Chem. Eng. Data. 2016. Vol. 61. P. 2669-2675.

60. M. F. Palavra, M. A. Tavares Cardoso, J. A. P. Coelho, M. F. B. Mourato. Density Measurements of Fluids and Their Mixtures at High Pressure. Chemical Engineering & Technology. 2007. Vol. 30. P. 689–694.

61. A. Velez, S. Pereda, E. A. Brignole. Isochoric lines and determination of phase transitions in supercritical reactors. The Journal of Supercritical Fluids. 2010. Vol. 55. P. 643–647.

62. Espinosa S., Fornari T., Bottini S., Brignole E.A. Phase Equilibria in Mixtures of Fatty oils and Derivatives with Near Critical Fluids Using the GC-EoS Model. J. Supercrit. Fluids. 2002. Vol. 23. P. 91.

63. Ferreira O., Macedo E.A., Brignole E.A. Application of the GCA-EoS Model to Supercritical Processing of Associating Oil Derivatives: Fatty Acids, Alcohols and Triglycerides. J. Food Eng. 2005. Vol. 70. P. 579.

64. Sawangkeaw R., Satayanon W., Bunyakiat K., Camy S., Condoret J.-S., Ngamprasertsith S. Continuous Production of Biodiesel with Supercritical Methanol: a Simple Compressible Flow Model for Tubular Reactors. Int. J. Chem. React. Eng. 2011. Vol. 9. P. 23-32.

65. Timms R.E. Physical Properties of Oils and Mixtures of Oils. JAOCS. 1985. Vol. 62. № 2. P. 241–249.

66. Fasina O.O. Viscosity and Specific Heat of Vegetable Oils as a Function of Temperature: 35°C to 180°C. International Journal of Food Properties. 2008. Vol. 11. № 4. P. 738–746.

67. Santos J.C.O., Santos M.G.O., Dantas J.P., Conceicao M.M., Athaide-Filho P.F., Souza A.G. Comparative study of specific heat capacities of some vegetable oils obtained by DSC and microwave oven. J. Therm. Anal. Cal. 2005. Vol. 79. P. 283-287.

68. Morad N.A., Mustafa Kamal A.A., Panau F., Yew T.W., Liquid specific heat capacity estimation for fatty acids, triacylglycerols, and vegetable oils based on their fatty acid composition. J. Am. Oil Chem. Soc. 2000. Vol. 77. P. 1001-1005.

69. Edwin E. Garcia Rojas, Jane S.R. Coimbra, Javier Telis-Romero. Thermophysical properties of cotton, canola, sunflower, and soybean oils as a function of temperature. International Journal of Food Properties. 2013. Vol. 16. P. 1620–1629.

70. Yung-Chieh Su, Y.A. Liu. Selection of Prediction Methods for Thermophysical Properties for Process Modeling and Product Design of Biodiesel Manufacturing. Ind. Eng. Chem. Res. 2011. Vol. 50. P. 6809–6836.

71. Zong L., S. Ramanathan, C.C. Chen. Fragment-Based Approach for Estimating Thermofisical of Fats and Vegetable Oils For Modeling Biodisel Production Process. Ind. Eng. Chem. Res. 2010. Vol. 49. P. 876-886.

72. George Anitescu, Thomas J. Bruno. Fluid properties needed in supercritical transesterification of triglyceride feedstocks to biodiesel fuels for efficient and clean combustion – A review. J. of Supercritical Fluids. 2012. Vol. 63. P. 133–149.

73. S.K. Hoekman, Amber Broch, Curtis Robbins, Eric Ceniceros, Mani Natarajan. Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews. 2012. Vol. 16. P. 143– 169.

74. Parag Saxena, Sayali Jawale, Milind H Joshipur. A review on prediction of properties of biodiesel and blends of biodiesel. Procedia Engineering. 2013. Vol. 51. P. 395–402.

75. R. Larsson, O. Andersson. Lubricant thermal conductivity and heat capacity under high pressure. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of Engineering Tribology. 2000. Vol. 214. P. 337-342.

76. Bogdan M. Leu, Hasan Yavas¸ Innokenty Kantor, Vitali B. Prakapenka. Specific Heat of Olive Oil to 356 MPa. J Am Oil Chem Soc. 2010. V. 87. P. 1517–1520.

77. Loc Thai Nguyen, V.M. Balasubramania, S.K. Sastry. Determination of in-situ thermal conductivity, thermal diffusivity, volumetric specific heat and isobaric specific heat of selected foods under pressure. UnderInternational Journal of Food Properties. 2012. V. 15. P. 169– 187.

78. Wu J, Liu Z., Jin X., Pan J. Thermal conductivity of some oxygenated fuels and additives in the saturated liquid phase. Journal of Chemical and Engineering Data. 2005. Vol. 50. P. 102-104.

79. Alpaslan Turgut, Ismail Tavman, Sebnem Tavman. Measurement of thermal conductivity of edible oils using transient hot wire method. Thermal conductivities of three different edible oils. International Journal of Food Properties. 2009. V. 12. P. 741–747.

80. Brock J., Nogueira M.R., Zakrzevski C., Corazza F.D.C., Corazza M.L., De Oliveira J.V. Experimental measurements of viscosity and thermal conductivity of vegetable oils. Ciencia Tecnol. Aliment. 2008. V. 28. P. 564-570.

81. Vlasta Vozárová, Monika Božiková, Michal Valach, Ľubomír Híreš, Ana Petrović, Ján Csillag, Tomáš Regrut. Comparative study of edible vegetable oils physical properties. Journal on Processing and Energy in Agriculture. 2015. Vol. 19. P. 67-70.

82. J.-F. Hoffmann, J.-F. Henry, G. Vaitilingom, R. Olives, M. Chirtoc, D. Caron, X. Py. Temperature dependence of thermal conductivity of vegetable oils for use in concentrated solar power plants, measured by 3omega hot wire method. International Journal of Thermal Sciences. 2016. V. 107. P. 105-110.

83. Vinay Atgur, Manavendra G., G.P. Desai. Experimental Investigation of Thermal Conductivity and Specific Heat and Thermal Degradation of Vegetable Oils For A Range Of Temperature Research. Journal of Chemical and Environmental Sciences. 2016. V. 4. P. 107-111.

84. Engines Augustin Sampawindé Zongo, Gilles Vaïtilingom, Tizane Daho, Christian Caillol, Jean-François Hoffmann, Bruno Piriou, Jeremy Valette, Bila Gérard Segda, Pascal Higelin. Temperature Dependence of Density, Viscosity, Thermal Conductivity and Heat Capacity of Vegetable Oils for Their Use as Biofuel in Internal Combustion. Advances in Chemical Engineering and Science. 2019. V. 9. P. 44-64.

85. Richard A. Perkins, Marcia L. Huber. Measurement and Correlation of the Thermal Conductivities of Biodiesel Constituent Fluids: Methyl Oleate and Methyl Linoleate. Energy Fuels. 2011. V. 25. P. 2383–2388.

86. Horrocks J.K., McLaughlin E. Thermal conductivity of simple molecules in the condensed state. Trans. Faraday Soc. 1960. V. 56. P. 206–212.

87. Horrocks J.K., McLaughlin E. Temperature dependence of the thermal conductivity of liquids. Trans. Faraday Soc. 1963. V. 59. P. 1709–1716.

88. Noureddini H., Teoh B.C., Davis Clements L. Viscosities of Vegetable Oils and Fatty Acids. Journal of the American Oil Chemists Society. 1992. V. 69(12). P. 1189–1191.

89. H. Abramovic, C. Klofutar. The temperature dependence of dynamic viscosity for some vegetable oils. Acta Chimica Slovenica. 1998. V. 45. P. 69–77.

90. Mircea Oroian, Gheorge Gutt. Influence of temperature on the physical properties of vegetable oils. Journal of Faculty of Food Engineering. 2015. V. 14. P. 162–170.

91. K. Anand, Avishek Ranjan, Pramod S. Mehta. Estimating the Viscosity of Vegetable Oil and Biodiesel. Energy Fuels. 2010. V. 24. P. 664–672.

92. Lemuel M. Diamante and Tianying Lan Absolute Viscosities of Vegetable Oils at Different Temperatures and Shear Rate Range of 64.5 to 4835 s−1. Journal of Food Processing. 2014. V. 12. P. 12-17.

93. Shreya N. Sahasrabudhe, Veronica Rodriguez-Martinez, Meghan. O’Meara, Brian E. Farkas. Density, viscosity, and surface tension of five vegetable oils at elevated temperatures: Measurement and modeling. International journal of food properties. 2017. V. 20. No. S2. P. S1965–S1981.

94. C. J. Schaschke, S. Abid, M. J. Heslop. High-pressure viscosity measurement of fatty acids and oils. High Pressure Research. 2007. V. 27. No. 1. P. 33–37.

95. C. J. Schaschke, S. Allio, E. Holmberg. Viscosity measurement of vegetable oil at high pressure. Trans IChemE, Part C. Food and Bioproducts Processing. 2006. V. 84. P. 173–178.

96. Toshifumi Mawatari, Ryusei Fukuda, Hirohito Mori, Sobahan Mia, Nobuyoshi Ohno. High Pressure Rheology of Environmentally Friendly Vegetable Oils. Tribol Lett. 2013. V. 51. P. 273–280.

97. R.E. Tate, K.C. Watts, C.A.W. Allen. The viscosity of three biodiesel fuels at temperatures up to 300 ºC. Fuel. 2006. № 85. P. 1010-1015.

98. W. Yuan, A.C. Hansen, Q. Zhang, Z. Tan. Temperature dependent kinematic viscosity of selected biodiesel fuels and blends with diesel fuel. J. Am. Oil Chem. Soc. 2005. № 82. P. 195-199.

99. I. Nita, S. Geacai. Study of density and viscosity variation with temperature for fuels for diesel engine. Ovidius Univer. Ann. Chem. 2011. № 22. P. 57-61.

100. I. Nita, S. Geacai, O. Iulian. Measurements and correlations of physical-chemical properties to composition of pseudo-binary mixtures with biodiesel. Renewable Energy. 2011. № 36. P. 3417-3423.

101. G.R. Moradi, B. Karami, M. Mohadesi. Densities and kinematic viscosities in biodiesel-diesel blends at various temperatures. J. Chem. Eng. Data. 2012. № 58. P. 99-105.

102. G. Knothe, K.R. Steidley. Kinematic viscosity of biodiesel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel. 2005. № 84. P. 1059–1065.

103. C.A.W. Allen, K.C. Watts, R.G. Ackman, M.J. Pegg. Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel. 1999. № 78. P. 1319-1326.

104. S. Freitas, M.J. Pratas, R. Ceriani, J.A.P. Coutinho. Evaluation of predictive models for the viscosity of biodiesel. Energy Fuels. 2001. № 25. P. 352-358.

105. T.O. de Macedo, R.G. Pereira, J.M. Pardal, A.S. Soares, V.J. de Lameria. Viscosity of vegetable oils and biodiesel and energy generation. Int. Schol. Sci. Res. Innov. 2013. № 7. P. 184-189.

106. Maria Jorge Pratas, Samuel Freitas, Mariana B. Oliveira, Sı´lvia C. Monteiro, Alvaro S. Lima, Joa˜o A.P. Coutinho Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters. J. Chem. Eng. Data. 2010. V. 55. P. 3983–3990.

107. Nwadike Isioma, Yahaya Muhammad, O’Donnell Sylvester, Demshemino Innocent, Okoro Linus. Cold Flow Properties and Kinematic Viscosity of Biodiesel Universal. Journal of Chemistry. 2013. Vol. 1(4). P. 135-141.

108. F.P. Sousa, M.A. Luciano, V.M.D. Pasa. Thermogravimetry and viscometry for assessing the ester content (FAME and FAEE). Fuel Process. Technol. 2013. V. 109. P. 133–140.

109. S. Bair. The pressure and temperature dependence of volume and viscosity of four Diesel fuels. Fuel. 2014. Vol. 135. P. 112–119.

110. Bair S. High pressure rheology for quantitative elastohydrodynamics. Elsevier Science. 2007. Vol. 60–61. P. 116–122.

111. Bair S, Mary C, Bouscharain N, Vergne P. An improved Yasutomi correlation for viscosity at high pressure. Proc Inst Mech Eng Part J. J Eng Tribol. 2013. V. 227(9). P. 1056– 1060.

112. Laesecke A, Bair S. High-pressure viscosity measurements of 1,1,1,2- tetrafluoroethane. Int J Thermophys. 2011. Vol. 2(5). P. 925–941.

113. A.B. Chhetri, K.C. Watts. Viscosities of canola, jatropha and soapnut biodiesel at elevated temperatures and pressures. Fuel. 2012. Vol. 102. P. 789–794.

114. Andrew M. Duncan, Azita Ahosseini, Reece McHenry, Christopher D. Depcik, Susan M. Stagg-Williams, Aaron M. Scurto. High-Pressure Viscosity of Biodiesel from Soybean, Canola, and Coconut Oils. Energy Fuels. 2010. V. 24. P. 5708–5716.

115. Andrew M. Duncan, Noorbahiyah Pavlicek, Christopher D. Depcik, Aaron M. Scurto, Susan M. Stagg-Williams. High-Pressure Viscosity of Soybean-Oil-Based Biodiesel Blends with Ultra-Low-Sulfur Diesel Fuel. Energy Fuels. 2012. Vol. 26. P 7023−7036.

116. Samuel V.D. Freitas, J. J. Segovia, M. Carmen Martнn, Johnny Zambrano, Mariana B. Oliveira, Alvaro S. Lima, J.A.P. Coutinho. Measurement and prediction of high-pressure viscosities of biodiesel fuels. Fuel. 2014. V. 122. P. 223–228.

117. Matthieu Habrioux, Jean-Patrick Bazile, Guillaume Galliero, Jean Luc Daridon. Viscosities of Fatty Acid Methyl and Ethyl Esters under High Pressure: Methyl Caprate and Ethyl Caprate. J. Chem. Eng. Data. 2015. V. 60. P. 902-908.

118. Matthieu Habrioux, Djamel Nasri, Jean Luc Daridon. Measurement of speed of sound, density compressibility and viscosity in liquid methyl laurate and ethyl laurate up to 200 MPa by using acoustic wave sensors. The Journal of Chemical Thermodynamics. 2018. V. 120. P. 1-12.

119. L.X. Robertson, C.J. Schaschke. Combined High Pressure and Low Temperature Viscosity Measurement of Biodiesel. Energy Fuels. 2010. Vol. 24. P. 1293–1297.

120. C.J. Schaschke. Experimental viscosity measurements of biodiesels at high pressure Chem. Ind. Chem. Eng. Q. 2016. V. 22(4). P. 453−460.

121. Шамсетдинов Ф.Н., Булаев С.А., Зарипов З.И. Коэффициент теплового расширения растительных масел при высоких давлениях // Вестник Казан. технич. ун-та им А.Н. Туполева. 2011. № 2. С. 11-16.

122. Usmanov R.A, Gabitov R.R., Biktashev Sh.A., Shamsetdinov F.N., Gumerov F.M., Gabitov F.R., Zaripov Z.I., Gazizov R.A., Yarullin R.S., Yakushev I.A. Pilot Unit for Permanent Transesterification of Vegetable Oils in Supercritical Methanol or Ethanol Media. Russian Journal of Physical Chemistry B. 2011. V. 5. No. 8. P. 1216–1227.

123. R.R. Gabitov, I.R. Gabitov, F.N. Shamsetdinov, T.R. Ahmetzjanov, R.A. Usmanov, Z.I. Zaripov. The heat capacity of the mixture of rapeseed oil and alcohols, are in sub- and supercritical fluid conditions. Bulletin of Kazan Technological University. 2012. V.15. No. 9. P. 56-59.

124. S.V. Mazanov, R.A. Usmanov, I.R. Gabitov, F.M. Gumerov, Z.I. Zaripov, R.Z. Musin. Thermophysical bases of catalytic and non-catalytic transesterification of rapeseed oil in ethanol under supercritical fluid conditions. Butlerov Communications. 2015. V. 41. No. 1. P. 58- 66.

125. R. A. Usmanov, F. M. Gumerov, F. R. Gabitov, Z. I. Zaripov, F. N. Shamsetdinov, I. M. Abdulagatov, in Liquid Fuels: Types, Properties and Production. Chap. 3: Nova Science, New York, 2012., p. 99.

126. Р. Р. Габитов, Р. Р. Накипов, Ф. Н. Шамсетдинов, Р. А. Усманов, И. Х. Хайруллин, З.И. Зарипов. Переносные свойства растительных масел // Вестник Казанского технологического университета. 2012. Т. 15. № 21. С. 25-27.

127. И.Р. Габитов, Р.Р. Накипов, З.И. Зарипов. Коэффициенты теплопроводности смеси рапсовое масло – этанол в диапазоне температур 303-363 K и давлений до 30 Мпа // Вестник казанского технологического университета. 2014. Т. 17. № 6. С. 113-116.

128. А.Р. Габитова, И.Р. Габитов, З.И. Зарипов. Исследование коэффициента динамической вязкости рапсового масла как основы биодизельного топлива в широкой области изменения параметров состояния // Вестник технологического университета. 2015. Т. 18. № 17. C. 252-254.


Рецензия

Для цитирования:


Мазанов С.В., Зарипов З.И., Гумеров Ф.М., Усманов Р.А., Шаповалов Ю.А. Биодизельное топливо. ЧАСТЬ II. теплофизические свойства систем, участвующих в процессе получения биодизельного топлива с использованием рабочих сред в сверхкритическом флюидном состоянии. Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2022;24(5):35-60. https://doi.org/10.30724/1998-9903-2022-24-5-35-60

For citation:


Mazanov S.V., Zaripov Z.I., Gumerov F.M., Usmanov R.A., Shapovalov Yu.A. Biodiesel fuel. part ii. thermophysical properties of systems participated in the process of obtaining biodiesel fuel using working media in the supercritical fluid state. Power engineering: research, equipment, technology. 2022;24(5):35-60. (In Russ.) https://doi.org/10.30724/1998-9903-2022-24-5-35-60

Просмотров: 417


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)