Current state of the problems of functioning of relay protection and automation complexes used in an active adaptive network
https://doi.org/10.30724/1998-9903-2022-24-6-102-123
Abstract
THE PURPOSE. To analyze the influence of series compensation devices on the operating modes of power transmission lines. To identify problems of functioning of relay protection and automation complexes when they are used on power transmission lines with a series compensation device.
METHODS. The analysis of literature data and data of international information exchange is carried out.
RESULTS. The study describes the relevance of the topic, considers the main elements of an electric power system with an active adaptive network; reveals the current state of affairs on the use of elements of an active adaptive network in the Unified Energy System of Russia, as well as prospects for further implementation of these elements in the Unified Energy System of the Russian Federation. The study shows the scope of application of series compensation devices with the inductive resistance for their placement on power transmission lines, and the optimal distance between series compensation devices, as well as the optimal parameters of the capacitive resistance relative to the resistance of the network. The study discloses problems of functioning of various types of relay protection and automation on power transmission lines with a series compensation device.
CONCLUSION. The use of a reactance series compensation device on the line causes problems of functioning for all types of relay protection and automation devices, namely: current, remote, differential and reclosing automation. At the moment, for the listed types and kinds of protection, there are scientific developments to solve these problems with their inherent advantages and disadvantages. The study indicates the most acute disadvantages of the differential relay protection.
About the Authors
I. Yu. IvanovRussian Federation
Igor Yu. Ivanov
Kazan
V. V. Novokreshchenov
Russian Federation
Vitaly V. Novokreshchenov
Kazan
V. R. Ivanova
Russian Federation
Viliya R. Ivanova
Kazan
References
1. Nudel'man GS, Podshivalin AN. Napravleniya innovatsionnogo razvitiya RZA. Releishchik. 2015; 3:18-22. (In Russ).
2. Gluskin IZ, Belotelov AK, Kos'yanchuk VV, Sapozhnikov AV. Nauchno-tekhnicheskii otchet «Razrabotka kontseptsii razvitiya i primeneniya sistem releinoi zashchity i avtomatiki dlya intellektual'noi elektroenergeticheskoi sistemy s aktivno-adaptivnoi set'yu». Book 1. Moscow: "Design and research institute of power systems and networks «ENERGOSETPROJECT» limited; 2012. Contract № 0710/2011.
3. STATCOM [Internet]. Moscow: Official website of a public joint stock company «Federal'naya setevaya kompaniya Edinoi energeticheskoi sistemy». Available at: http://www.fskees.ru/innovation/intelligent_network/new_types_of_power_equipment_of_substations_and_overhead_power_lines/static_compensator_statcom/. Accessed: 31 May 2022.
4. Long W, Nilsson SL. Introduction to flexible AC transmission systems (FACTS) controllers: a chronology. In: Andersen BR, Nilsson SL, editors. Flexible AC Transmission Systems. Cham: Springer Nature Switzerland AG; 2020. P. 3-12.
5. Bekri O. L., Fellah M. K. The Static Var Compensator (SVC) Device in the power systems Using Matlab/SimPowerSystems. In: International Conference on Electrical Engineering and its Applications «ICEEA’08»; 20-21 May 2008. Sidi Bel-Abbès; 2008. Available at: https://www.researchgate.net/publication/272294293_The_Static_Var_Compensator_SVC_Device_in_the_power_systems_Using_MatlabSimPowerSystems. Accessed: 24 Jul 2022.
6. Barrios-Martínez E., Ángeles-Camacho C. Technical comparison of FACTS controllers in parallel connection. Journal of applied research and technology. 2017;15(1):36-44.
7. Mahapatra Sh., Goyal A., Kapil N. Thyristor Controlled Reactor for Power Factor Improvement // International Journal of Engineering Research and Applications. 2014; 4(4):55-9.
8. Taktode K. C., Rojatkar G. S., Raut Bh. T., et al. Reactive Power Control by Using Thyristor Switched Capacitor (TSC) and Thyristor Controlled Reactor (TCR) in FACTS. International Journal of Science and Research. 2019;8(4):61-4.
9. Miske SA., Nozari F., Miller T., Moran R., Matraszek S. Static reactive power compensators for high voltage powersystems. Schenectady (NY): General Electric Company; 1982.
10. Lima M, Nilsson SL. Technical Description of Static Var Compensators (SVC). In: Andersen BR, Nilsson SL, editors. Flexible AC Transmission Systems. Cham: Springer Nature Switzerland AG; 2020. P. 155–206.
11. Gelen A., Yalcinoz T. The behavior of thyristor switched capacitor (TSC) installed in an infinite bus system. In: The IEEE Region 8 Eurocon 2009 Conference; May 2009. Saint-Petersburg; 2009. Available at: https://www.researchgate.net/publication/224564356_The_behavior_of_Thyristor_Switched_Capacitor_TSC_installed_in_an_infinite_bus_system. Accessed: 6 aug 2022.
12. Davidson C, de Oliveira MM. Technical Description of Static Compensators (STATCOM). In: Andersen BR, Nilsson SL, editors. Flexible AC Transmission Systems. Cham: Springer Nature Switzerland AG; 2020. P. 207-251.
13. Smolovik SV, Bryantsev AM. Development of Magnetically Controlled Shunt Reactors in Russia. In: Andersen BR, Nilsson SL, editors. Flexible AC Transmission Systems. Cham: Springer Nature Switzerland AG; 2020. P. 401–421.
14. Jancke G, Åkerström K. The series capacitor in Sweden. Electrical Engineering. 1952;71(3):222-7.
15. Nilsson SL, de Mattos Tenório AR, Sen S, Taylor A, Xu S, Zhao G, Song Q, Lei B. Application Examples of the Thyristor Controlled Series Capacitor. In: Andersen B.R., Nilsson S.L., editors. Flexible AC Transmission Systems. Cham: Springer Nature Switzerland AG; 2020. P. 586–638.
16. Vandana, Verma S.N. Comparative Study of Different Facts Devices. International Journal of Engineering Research & Technology. 2014;3(6):1819–22.
17. Ahmadi A., Gandoman F. H., Khaki B., et al. Comprehensive review of gatecontrolledseries capacitor and applications in electricalsystems. IET Generation, Transmission & Distribution. 2017;11(5):1085–93.
18. Kamalapur G. D., Sheelavant V. R. Simulation and Analysis of GCSC in Power System. Asian Journal of Convergence in Technology. 2018;3(3). Available at: https://asianssr.org/index.php/ajct/article/view/274. Accessed: 9 Aug 2022.
19. Maruf N. I., Mohsin, Shoeb A., et al. Study of thyristor controlled series capacitor (TCSC) as a useful FACTS device. International journal of engineering science and technology. 2010;2(9):4357-60.
20. Aleem U. V., Mallareddy CH., Pitre S. S., et al. Static Synchronous Series Compensator (SSSC) as Stability Booster of a Power System. International Journal of Engineering Trends and Technology. 2017;46(6). pp. 316-9.
21. Nilsson SL, de Oliveira MM. Technical Description of Thyristor Controlled Series Capacitors (TCSC). In: Andersen BR, Nilsson SL, editors. Flexible AC Transmission Systems. Cham: Springer Nature Switzerland AG; 2020. P. 254–297.
22. Yin J., CHen G., Xu H., LI Q., LIU J., LI P. Unified Power Flow Controller Technology and Application. London: Academic Press; 2017.
23. Lee H.-J., Lee D.-Sh., Yoon Y.-D. Unified Power Flow Controller Based on Autotransformer Structure. Electronics. 2019;8(12). doi: 10.3390/electronics8121542.
24. Mailah N.F., Bashi S.M. Single Phase Unified Power Flow Controller (UPFC): Simulation and Construction. European Journal of Scientific Research. 2009;30(4):677-84.
25. Baskar S., Kumarappan N., Gnanadass R. A Novel Configuration of Unified Power Flow Controller. In: Das V.V., Stephen J., Thankachan N. et al. editors. Power Electronics and Instrumentation Engineering. PEIE 2010: Proceedings of the International Conference; 7-9 Sep., 2010; Kochi, Kerala, India. Berlin, Heidelberg: Springer; 2010. pp. 15-19.
26. Hussein N., Eisa A., Rashad E. E. Analyzing the interline power flow controller (IPFC) steady state performance in power systems. In: Proceedings of the 15th International Middle East Power Systems Conference «MEPCON’12», 23-25 Dec 2012. Egypt, Alexandria University; 2012. Available at: https://www.researchgate.net/publication/284032295_Analyzing_the_Interline_Power_Flow_Controller_IPFC_Steady_State_Performance_in_Power_Systems. Accessed: 11 Aug 2022.
27. Gyugyi L. Interline Power Flow Controller (IPFC). In: Eremia M., Liu Ch.-Ch., Edris A.-A., editors. Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence. Hoboken (NJ): John Wiley & Sons, Inc.; 2016. P. 629-50.
28. Vijayakumar YN, Dr. Sivanagaraju Application of interline power flow controller (IPFC) for power transmission system. International journal of innovative research in electrical, electronics, instrumentation and control engineering. 2014;2(10):2138-42.
29. Hussein N., Mahmoud H., Shehata S., Othman E.-S., Eisa A. Interline Power Flow Controller (IPFC) Characterization in Power Systems. Majlesi Journal of Electrical Engineering. 2019;13(3):1656-65. doi: 10.14419/ijet.v7i3.14894.
30. Kuznetsov A. V., Yurenkov Yu. P., Sitnikova Yu. D. Problema ogranicheniya tokov korotkogo zamykaniya v energosberegayushchikh sistemakh transportirovki i raspredeleniya elektroenergii. Vestnik Ul'yanovskogo gosudarstvennogo tekhnicheskogo universiteta. 2020;1:36–41.
31. Jovcic D. High voltage direct current transmission: converters, systems and DC grids. 2nd ed. Hoboken (NJ): John Wiley & Sons; 2019.
32. Huq KSSh, Huq KR. A Technical Review on High Voltage Direct Current (HVDC) Transmission. International Journal of Electrical Engineering. 2018;11(1):77-85.
33. Kumar A., Hussain D.M.A. HVDC (high voltage direct current) transmission system: a review paper. Gyancity Journal of Engineering and Technology. 2018;4(2):1-10.
34. Arrillaga J. High Voltage Direct Current Transmission. London, UK: Institution of Electrical Engineers; 1998.
35. Bertinato A, Torwelle P, Dantas de Freitas G, Colmenero M, Raison B. Pole-to-ground fault protection strategy for HVDC grids under symmetrical monopolar configuration In: 2019 IEEE Milan PowerTech: Proceedings of the 13th IEEE PowerTech conference; 23-27 Jun 2019; Milan, Italy. Available at: https://ieeexplore.ieee.org/document/8810909. Accessed: 13 Aug 2022.
36. Goertz M, Wenig S, Beckler S, Hirsching C, Suriyah M, Leibfried T. Analysis of Cable Overvoltages in Symmetrical Monopolar and Rigid Bipolar HVDC Configuration. IEEE Transactions on Power Delivery. 2020;35(4):2097-107. doi: 10.1109/TPWRD.2019.2960851.
37. Murty PSR. Electrical Power Systems. Boston (MA): Butterworth-Heinemann; 2017.
38. Filimonova AA, Chichirov AA, Chichirova ND, Filimonov AG. Global energy association: new opportunities of hydrogen technologies. Proceedings of the higher educational institutions. ENERGY SECTOR PROBLEMS. 2021;23(2):3-13. doi:10.30724/1998-9903-2021-23-2-3-13.
39. Series compensation device [Internet]. Moscow: Official website of a public joint stock company «Federal'naya setevaya kompaniya Edinoi energeticheskoi sistemy». Available at: https://www.fskees.ru/innovation/intelligent_network/new_types_of_power_equipment_of_substations_and_overhead_power_lines/series_compensation_device/. Accessed: 29 Jul 2022.
40. Insert asynchronous communication [Internet]. Moscow: Official website of a public joint stock company «Federal'naya setevaya kompaniya Edinoi energeticheskoi sistemy». Available at: https://www.fskees.ru/innovation/intelligent_network/new_types_of_power_equipment_of_substations_and_overhead_power_lines/insert_asynchronous_communication/. Accessed: 29 Jul 2022.
41. Antonov AV, Fokin VK, Tuzlukova EV. O primenenii ustroistv prodol'noi emkostnoi kompensatsii v vysokovol'tnykh elektricheskikh setyakh Rossii. Energy of Unified Grid, scientific and technical journal. 2017; 6(29):26-41.
42. Bagriyanik M, Dag H. Determination of location of series compensation devices using fuzzy decision making. European Transactions on Electrical Power. 2001;11(4):241-5. doi: 10.1002/etep.4450110405.
43. Nekukar A. R. Vybor raspolozheniya ustanovok raspredelennoi prodol'noi emkostnoi kompensatsii na linii elektroperedachi. Bulletin of MPEI. 2010; 4:5-11.
44. Atabekov GI. Voprosy releinoi zashchity linii elektroperedachi s prodol'noi emkostnoi kompensatsiei. Zhurnal Elektrichestvo. 1953; 8:5-8.
45. Frimpong EA, Okyere PhY. A review of adaptive autoreclosure techniques. Indian Journal of Computer Science and Engineering. 2010;1(3):222-8.
46. Esztergalyos-Chairman J, Andrichak J, Colwell DH, et al. Single phase tripping and auto reclosing of transmission lines, IEEE committee report. Transactions on Power Delivery. 1992;7(1):182-92.
47. Zhalefar, F. Adaptive single-phase reclosing in transmission lines [dissertation]. London, Ontario, Canada; 2015. Available at: https://core.ac.uk/download/pdf/61676356.pdf. Accessed: 15 августа 2017.
48. Garke V. G. Bystrodeistvuyushchii releinyi organ dlya distantsionnoi zashchity linii s prodol'noi kompensatsiei. Patent USSR №454628. 25.12.74. Byul. №47. Available at: https://yandex.ru/patents/doc/SU454628A1_19741225. Accessed: 15 Aug 2022.
49. Bulychev AV, Kolobrodov EN. Avtomatika i zashchita linii elektroperedachi s upravlyaemoi prodol'noi kompensatsiei v avariinykh rezhimakh // Energetik. 2012; 12:19-24.
50. Altuve H.J., Mooney J.B., Alexander G.E. Advances in Series-Compensated Line Protection. In: Proceedings of the 63rd Annual Georgia Tech Protective Relaying Conference; 22-24 Apr 2009; Atlanta, Georgia; 2009. Available at: https://cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6340_SeriesCompLineProt_JM_20081022_Web.pdf. Accessed: 16 Aug 2022.
Review
For citations:
Ivanov I.Yu., Novokreshchenov V.V., Ivanova V.R. Current state of the problems of functioning of relay protection and automation complexes used in an active adaptive network. Power engineering: research, equipment, technology. 2022;24(6):102-123. (In Russ.) https://doi.org/10.30724/1998-9903-2022-24-6-102-123