Preview

Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ

Расширенный поиск

Обзор современных керамических ячеистых материалов и композитов, применяемых в теплотехнике

https://doi.org/10.30724/1998-9903-2023-25-1-82-104

Аннотация

ЦЕЛЬ. Ячеистые керамические материалы и композиты нашли применение во многих отраслях промышленности: энергетике, химической отрасли, строительстве, космонавтике. Благодаря высоким термомеханическим свойствам, стойкости к воздействию высоких температур и низкой плотности, ячеистые керамические материалы широко применяются в качестве теплообменников для рекуперации тепла отходящих газов газотурбинных двигателей, парогазовых установок, промышленных печей и т.д. Целью данной работы является обзор современных ячеистых керамических материалов и композитов, применяемых в теплотехнике, и имеющих различную структуру, свойства и химический состав.

МЕТОДЫ. Проведен широкий обзор литературы, посященной керамическим ячеистым материалам и композитам. Исследовалась как отечественная, так и зарубежная литература.

РЕЗУЛЬТАТЫ. Проведен анализ ячеистых керамических материалов с регулярной (решетки) и случайной (пены) структурой. Проанализированы основные факторы, влияющие на свойства керамических пен и решеток. Также исследованы основные методы производства керамических материалов, выявлены их достоинства и недостатки. Проведен обзор современных композитных материалов на основе керамической матрицы, армированной углеродными нанотрубками, графеновыми нанопластинками, углеродными волокнами.

ЗАКЛЮЧЕНИЕ. Свойства керамических ячеистых материалов, а также сферы их применения зависят от методов производства и структуры материала. Открытоячеистые пены нашли применение в качестве фильтров, теплообменников, в то время как закрытоячеистые пены используют в качестве тепловой изоляции. Области применения керамических решеток ограничиваются точностью, разрешением и размерами 3D-печати. Таким образом, совершенствование аддитивных технологий производства позволит улучшить характеристики керамических решеток и расширить области их применения.

Об авторах

О. В. Соловьева
Казанский государственный энергетический университет
Россия

Соловьева Ольга Викторовна – канд. физ.-мат. наук, доцент кафедры «Энергообеспечение предприятий, строительство зданий и сооружений» (ЭОС), заведующая научно-исследовательской лабораторией «Разработка энергоэффективных теплообменников»

г. Казань



С. А. Соловьев
Казанский государственный энергетический университет
Россия

Соловьев Сергей Анатольевич – канд. физ.-мат. наук, доцент кафедры «Инженерная кибернетика» (ИК)

г. Казань



Р. З. Шакурова
Казанский государственный энергетический университет
Россия

Шакурова Розалина Зуфаровна – аспирант кафедры «Энергообеспечение предприятий, строительство зданий и сооружений» (ЭОС)

г. Казань



Список литературы

1. Jouhara H., Khordehgah N., Almahmoud S., Delpech B., Chauhan A., Tassou S. A. Waste heat recovery technologies and applications // Thermal Science and Engineering Progress. 2018. Vol. 6, pp. 268-289.

2. Zhang C., Gümmer V. High temperature heat exchangers for recuperated rotorcraft powerplants // Applied Thermal Engineering. 2019. Vol. 154, pp. 548-561.

3. Sommers A., Wang Q., Han X., T'Joen C., Park Y., Jacobi A Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—A review // Applied Thermal Engineering. 2010. Vol. 30, N11-12, pp. 1277-1291.

4. Smyth R. The use of high temperature heat exchangers to increase power plant thermal efficiency // IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No. 97CH6203). IEEE. 1997. Vol. 3, pp. 1690-1695.

5. Liu H. C., Tsuru H., Cooper A. G., Prinz F. B. Rapid prototyping methods of silicon carbide micro heat exchangers // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2005. Vol. 219, N7, pp. 525-538.

6. Dai H., Lin B., Ji K., Wang C., Li Q., Zheng Y., Wang K. Combustion characteristics of low-concentration coal mine methane in ceramic foam burner with embedded alumina pellets //Applied Thermal Engineering. 2015. Vol. 90, pp. 489-498.

7. Xu Z., Lu Y., Wang B., Zhao L., Xiao Y. Experimental study on the off-design performances of a micro humid air turbine cycle: Thermodynamics, emissions and heat exchange //Energy. 2021. Vol. 219, pp. 119660.

8. Zhou W., Wu P., Zhang L., Zhu D., Zhao X., Cai Y. Heavy metal ions and particulate pollutants can be effectively removed by a gravity-driven ceramic foam filter optimized by carbon nanotube implantation //Journal of Hazardous Materials. 2022. Vol. 421, pp. 126721.

9. Shumilov V., Kirilin A., Tokarev A., Boden S., Schubert M., Hampel U., Hupa, L., Salmin, T., Murzin D. Y. Preparation of γ-Al2O3/α-Al2O3 ceramic foams as catalyst carriers via the replica technique //Catalysis Today. 2022. Vol. 383, pp. 64-73.

10. Rainer A., Giannitelli S. M., Abbruzzese F., Traversa E., Licoccia S.,Trombetta M. Fabrication of bioactive glass–ceramic foams mimicking human bone portions for regenerative medicine //Acta Biomaterialia. 2008. Vol. 4, N2, pp. 362-369.

11. Chen Y., Wang N., Ola O., Xia Y., Zhu Y. Porous ceramics: Light in weight but heavy in energy and environment technologies //Materials Science and Engineering: R: Reports. 2021. Vol. 143, pp. 100589.

12. Hardy D., Green D. J. Mechanical properties of a partially sintered alumina //Journal of the European Ceramic Society. 1995. Vol. 15, N8, pp. 769-775.

13. Chakravarty D., Ramesh H., Rao T. N. High strength porous alumina by spark plasma sintering //Journal of the European Ceramic Society. 2009. Vol. 29, N8, pp. 1361-1369.

14. Diaz A., Hampshire S., Yang J. F., Ohji T., Kanzaki S. Comparison of mechanical properties of silicon nitrides with controlled porosities produced by different fabrication routes //Journal of the American Ceramic Society. 2005. Vol. 88, N3, pp. 698-706.

15. Ohji T. Microstructural design and mechanical properties of porous silicon nitride ceramics //Materials Science and Engineering: A. 2008. Vol. 498, N1-2, pp. 5-11.

16. Fukushima M. Microstructural control of macroporous silicon carbide //Journal of the Ceramic Society of Japan. 2013. Vol. 121, N1410, pp. 162-168.

17. Hotta M., Kita H., Matsuura H., Enomoto N., Hojo J. Pore-size control in porous SiC ceramics prepared by spark plasma sintering //Journal of the Ceramic Society of Japan. 2012. Vol. 120, N1402, pp. 243-247.

18. Jin X., Zhang X., Han J., Hu P., He R. Thermal shock behavior of porous ZrB2–SiC ceramics //Materials Science and Engineering: A. 2013. Vol. 588, pp. 175-180.

19. Yuan H., Li J., Shen Q., Zhang L. Preparation and thermal conductivity characterization of ZrB2 porous ceramics fabricated by spark plasma sintering //International Journal of Refractory Metals and Hard Materials. 2013. Vol. 36, pp. 225-231.

20. Karl S., Somers A. V. Method of making porous ceramic articles : пат. 3090094 США. 1963.

21. Soy U., Demir A. Fabrication and optimization of boron carbide foams by polymeric sponge replication //Emerging Materials Research. 2020. Vol. 9, N2, pp. 388-395.

22. Luyten J., Thijs I., Vandermeulen W., Mullens S., Wallaeys B., Mortelmans R. Strong ceramic foams from polyurethane templates //Advances in applied ceramics. 2005. Vol. 104, N1, pp. 4-8.

23. Hooshmand S., Nordin J., Akhtar F. Porous alumina ceramics by gel casting: Effect of type of sacrificial template on the properties //International Journal of Ceramic Engineering & Science. 2019. Vol. 1, N2, pp. 77-84.

24. Ciurans Oset M., Nordin J., Akhtar F. Processing of macroporous alumina ceramics using pre-expanded polymer microspheres as sacrificial template //Ceramics. 2018. Vol. 1, N2, pp. 329-342.

25. Leng Q., Yao D., Xia Y., Liang H., Zeng Y. P Microstructure and permeability of porous zirconia ceramic foams prepared via direct foaming with mixed surfactants //Journal of the European Ceramic Society. 2022. Vol. 42, N16, pp. 7528-7537.

26. Du Z., Yao D., Xia Y., Zuo K., Yin J., Liang H., Zeng Y. P. The high porosity silicon nitride foams prepared by the direct foaming method //Ceramics International. 2019. Vol. 45, N2, pp. 2124-2130.

27. Gregorová E., Pabst W., Uhlířová T., Nečina V., Veselý M., Sedlářová I. Processing, microstructure and elastic properties of mullite-based ceramic foams prepared by direct foaming with wheat flour //Journal of the European Ceramic Society. 2016. Vol. 36, N1, pp. 109-120.

28. Barg S., Soltmann C., Andrad M., Koch D., Grathwohl G. Cellular ceramics by direct foaming of emulsified ceramic powder suspensions //Journal of the American Ceramic Society. 2008. Vol. 91, N9, pp. 2823-2829.

29. Axinte S. M., Paunescu L., Dragoescu M. F. Silicon carbide ceramic foam produced by direct microwave heating //Revista de Tehnologii Neconventionale. 2020. Vol. 24, N2, pp. 45-51.

30. Pradhan M., Bhargava P. Effect of Additives on Ceramic Foam Microstructure Processed by Direct Foaming of Aqueous Slurries //Transactions of the Indian Ceramic Society. 2004. Vol. 63, N3, pp. 151-154.

31. Chen A. N., Li M., Xu J., Lou C. H., Wu J. M., Cheng L. J., Shi Y. S., Li C. H. High-porosity mullite ceramic foams prepared by selective laser sintering using fly ash hollow spheres as raw materials //Journal of the European Ceramic Society. 2018. Vol. 38, N13, pp. 4553-4559.

32. Liu S. S., Li M., Wu J. M., Chen A. N., Shi Y. S., Li C. H. Preparation of highporosity Al2O3 ceramic foams via selective laser sintering of Al2O3 poly-hollow microspheres //Ceramics International. 2020. Vol. 46, N4, pp. 4240-4247.

33. Medri V., Mazzocchi M., Bellosi A. ZrB2‐based sponges and lightweight devices //International Journal of Applied Ceramic Technology. 2011. Vol. 8, N4, pp. 815-823.

34. Innocentini M. D., Sepulveda P., Salvini V. R., Pandolfelli V. C., Coury J. R. Permeability and structure of cellular ceramics: a comparison between two preparation techniques //Journal of the American Ceramic Society. 1998. Vol. 81, N12, pp. 3349-3352.

35. Soy U., Demir A., Caliskan F. Effect of bentonite addition on fabrication of reticulated porous SiC ceramics for liquid metal infiltration //Ceramics International. 2011. Vol. 37, N1, pp. 15-19.

36. Yao X., Tan S., Zhang X., Huang Z., Jiang D. Low-temperature sintering of SiC reticulated porous ceramics with MgO–Al 2 O 3–SiO 2 additives as sintering aids //Journal of materials science. 2007. Vol. 42, pp. 4960-4966.

37. Yao X., Tan S., Huang Z., Jiang D. Effect of recoating slurry viscosity on the properties of reticulated porous silicon carbide ceramics //Ceramics International. 2006. Vol. 32, N2, pp. 137-142.

38. Chae S. H., Kim Y. W., Song I. H., Kim H. D., Narisawa M. Porosity control of porous silicon carbide ceramics //Journal of the European Ceramic Society. 2009. Vol. 29, N13, pp. 2867-2872.

39. Eom J. H., Kim Y. W. Effect of template size on microstructure and strength of porous silicon carbide ceramics //Journal of the Ceramic Society of Japan. 2008. Vol. 116, N1358, pp. 1159-1163.

40. Soloveva O., Solovev S., Talipova A., Sagdieva T., Golubev Y. Study of heat transfer in a heat exchanger with porous granules for use in transport //Transportation Research Procedia. 2022. Vol. 63, pp. 1205-1210.

41. Soloveva O., Solovev S., Talipova A., Shakurova R., Sabirova J. Study of the heat transfer efficiency of spring elements for use in transport //Transportation Research Procedia. 2022. Vol. 63, pp. 1007-1014.

42. Solovev S. A., Soloveva O. V., Akhmetova I. G., Vankov Y. V., Paluku D. L. Numerical simulation of heat and mass transfer in an open-cell foam catalyst on example of the acetylene hydrogenation reaction //ChemEngineering. 2022. Vol. 6, N1, pp. 11.

43. Соловьева О. В., Соловьев С. А., Талипова А. Р. Исследование влияния пористости волокнистого материала на значение энергетической эффективности //Вестник Казанского государственного энергетического университета. 2022. Т. 14. №. 1. С. 53.

44. Соловьева О. В., Соловьев С. А., Ваньков Ю. В., Ахметова И. Г., Шакурова Р. З., Талипова А. Р. Исследование влияния геометрии высокопористого ячеистого материала на значение энергетической эффективности //Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2022. Т. 24. №. 3. С. 55-69.

45. Wu Z., Caliot C., Bai F., Flamant G., Wang Z., Zhang J., Tian C. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications //Applied Energy. 2010. Vol. 87, N2, pp. 504-513.

46. Wu Z., Caliot C., Flamant G., Wang Z. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances //International Journal of Heat and Mass Transfer. 2011. Vol. 54, N7-8, pp. 1527- 1537.

47. Patil V. R., Kiener F., Grylka A., Steinfeld A. Experimental testing of a solar air cavity-receiver with reticulated porous ceramic absorbers for thermal processing at above 1000 C //Solar Energy. 2021. Vol. 214, pp. 72-85.

48. Iasiello M., Bianco N., Chiu W. K., Naso V. The effects of variable porosity and cell size on the thermal performance of functionally-graded foams //International Journal of Thermal Sciences. 2021. Vol. 160, pp. 106696.

49. Richardson J. T., Peng Y., Remue D. Properties of ceramic foam catalyst supports: pressure drop //Applied Catalysis A: General. 2000. Vol. 204, N1, pp. 19-32.

50. Barreto G., Canhoto P., Collares-Pereira M. Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam //Energy. 2020. Vol. 200, pp. 117476.

51. Pusterla S., Ortona A., D’Angelo C., Barbato M. The influence of cell morphology on the effective thermal conductivity of reticulated ceramic foams //Journal of Porous Materials. 2012. Vol. 19, N3, pp. 307-315.

52. Yeranee K., Rao Y. A Review of Recent Investigations on Flow and Heat Transfer Enhancement in Cooling Channels Embedded with Triply Periodic Minimal Surfaces (TPMS) //Energies. 2022. Vol. 15, N23, pp. 8994.

53. Hu C., Sun M., Xie Z., Yang L., Song Y., Tang D., Zhao J. Numerical simulation on the forced convection heat transfer of porous medium for turbine engine heat exchanger applications //Applied Thermal Engineering. 2020. Vol. 180, pp. 115845.

54. Xu S., Wu Z., Lu H., Yang L. Experimental Study of the Convective Heat Transfer and Local Thermal Equilibrium in Ceramic Foam //Processes. 2020. Vol. 8, N11, pp. 1490.

55. You Y., Huang H., Shao G., Hu J., Xu X., Luo X. A three-dimensional numerical model of unsteady flow and heat transfer in ceramic honeycomb regenerator //Applied Thermal Engineering. 2016. Vol. 108, pp. 1243-1250.

56. Zhang X., Zhang K., Zhang L., Wang W., Li Y., He R. Additive manufacturing of cellular ceramic structures: From structure to structure-function integration //Materials & Design. 2022. pp. 110470.

57. Arshad A. B., Nazir A., Jeng J. Y. The effect of fillets and crossbars on mechanical properties of lattice structures fabricated using additive manufacturing //The International Journal of Advanced Manufacturing Technology. 2020. Vol. 111, pp. 931-943.

58. Zhao M., Liu F., Fu G., Zhang D. Z., Zhang T., Zhou H. Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM //Materials. 2018. Vol. 11, N12, pp. 2411.

59. Sereshk M. R. V., Triplett K., St John C., Martin, K., Gorin S., Avery A., Byer E., Conner S. P., Arash S. T., Shamsaei N. A Computational and Experimental Investigation into Mechanical Characterizations of Strut-Based Lattice Structures //2019 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2019.

60. Nazir A., Arshad A. B., Lin S. C., Jeng J. Y. Mechanical Performance of Lightweight-Designed Honeycomb Structures Fabricated Using Multijet Fusion Additive Manufacturing Technology //3D Printing and Additive Manufacturing. 2022. Vol. 9, N4, pp. 311-325.

61. Maskery I., Sturm L., Aremu A. O., Panesar A., Williams C. B., Tuck C. J., Wildman R. D., Ashcroft I. A., Hague R. J. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing //Polymer. 2018. Vol. 152, pp. 62-71.

62. AlMahri S., Santiago R., Lee D. W., Ramos H., Alabdouli H., Alteneiji M., guan Z., Cantwell W., Alves M. Evaluation of the dynamic response of triply periodic minimal surfaces subjected to high strain-rate compression //Additive Manufacturing. 2021. Vol. 46, pp. 102220.

63. Kovacev N., Li S., Zeraati-Rezaei S., Hemida H., Tsolakis A., Essa K. Effects of the internal structures of monolith ceramic substrates on thermal and hydraulic properties: additive manufacturing, numerical modelling and experimental testing //The International Journal of Advanced Manufacturing Technology. 2021. Vol. 112, pp. 1115-1132.

64. Wu Y., Zhi C., Wang Z., Chen Y., Wang C., Chen Q., Tan G., Ming T. Enhanced thermal and mechanical performance of 3D architected micro-channel heat exchangers //Heliyon. 2023.

65. Pelanconi M., Barbato M., Zavattoni S., Vignoles G. L., Ortona A. Thermal design, optimization and additive manufacturing of ceramic regular structures to maximize the radiative heat transfer //Materials & Design. 2019. Vol. 163, pp. 107539.

66. Khalil M., Ali M. I. H., Khan K. A., Al-Rub R. A. Forced convection heat transfer in heat sinks with topologies based on triply periodic minimal surfaces //Case Studies in Thermal Engineering. 2022. Vol. 38, pp. 102313.

67. Tang W., Zhou H., Zeng Y., Yan M., Jiang C., Yang P., Li Q., Li Z., Fu J., Huang Y., Zhao Y. Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp //International Journal of Heat and Mass Transfer. 2023. Vol. 201, pp. 123642.

68. Maurath J., Willenbacher N. 3D printing of open-porous cellular ceramics with high specific strength //Journal of the European Ceramic Society. 2017. Т. 37. №. 15. С. 4833-4842.

69. Ševeček O., Papšík R., Majer Z., Kotoul M. Influence of the cell geometry on the tensile strength of open-cell ceramic foams //Procedia Structural Integrity. 2019. Vol. 23, pp. 553-558.

70. Hegazi H. A., Mokhtar A. H. Optimum Design of Hexagonal Cellular Structures Under Thermal and Mechanical Loads. 2020. Vol. 9, N6, pp. IJERTV9IS060813

71. Yuan F., Wang H., Zhou P., Xu A., He D. Heat transfer performances of honeycomb regenerators with square or hexagon cell opening //Applied Thermal Engineering. 2017. Vol. 125, pp. 790-798.

72. Wen T., Tian J., Lu T. J., Queheillalt D. T., Wadley H. N. G. Forced convection in metallic honeycomb structures //International Journal of Heat and Mass Transfer. 2006. Vol. 49, N19-20, pp. 3313-3324.

73. Liu H., Yu Q. N., Zhang Z. C., Qu Z. G., Wang C. Z Two-equation method for heat transfer efficiency in metal honeycombs: An analytical solution //International Journal of Heat and Mass Transfer. 2016. Vol. 97, pp. 201-210.

74. Ozsipahi M., Subasi A., Gunes H., Sahin B. Numerical investigation of hydraulic and thermal performance of a honeycomb heat sink //International Journal of Thermal Sciences. 2018. Vol. 134, pp. 500-506.

75. Papakokkinos G., Castro J., Oliet C., Oliva A. Computational investigation of the hexagonal honeycomb adsorption reactor for cooling applications //Applied Thermal Engineering. 2022. Vol. 202, pp. 117807.

76. Radhika N., Sathish M. A review on Si-based ceramic matrix composites and their infiltration based techniques //Silicon. 2022. Vol. 14, N16, pp. 10141-10171.

77. Dhanasekar S., Ganesan A. T., Rani T. L., Vinjamuri V. K., Rao M. N., Shankar E., Dharamvir P., Kumar S., Golie W. M. A Comprehensive Study of Ceramic Matrix Composites for Space Applications //Advances in Materials Science and Engineering. 2022. Vol. 2022.

78. de Salazar J. G., Barrena M. I., Morales G., Matesanz L., Merino N. Compression strength and wear resistance of ceramic foams–polymer composites //Materials Letters. 2006. – Vol. 60, N13-14, pp. 1687-1692.

79. Ren Z. H., Jin P., Cao X. M., Zheng Y. G., Zhang J. S. Mechanical properties and slurry erosion resistance of SiC ceramic foam/epoxy co-continuous phase composite //Composites Science and Technology. 2015. Vol. 107, pp. 129-136.

80. Han N., Yao Z., Ye H., Zhang C., Liang P., Sun H., wang S., Liu S Efficient removal of organic pollutants by ceramic hollow fibre supported composite catalyst //Sustainable Materials and Technologies. 2019. Vol. 20, pp. e00108.

81. Qiu L., Yan K., Feng Y., Liu X., Zhang X. Bionic hierarchical porous aluminum nitride ceramic composite phase change material with excellent heat transfer and storage performance //Composites Communications. 2021. Vol. 27, pp. 100892.

82. Betke U., Proemmel S., Rannabauer S., Lieb A., Scheffler M., Scheffler F. Silane functionalized open-celled ceramic foams as support structure in metal organic framework composite materials //Microporous and Mesoporous Materials. 2017. Vol. 239, pp. 209-220.

83. Betke U., Proemmel S., Eggebrecht J. G., Rannabauer S., Lieb A., Scheffler,M., Scheffler F. Micro‐Macroporous Composite Materials: SiC Ceramic Foams Functionalized With the Metal Organic Framework HKUST‐1 //Chemie Ingenieur Technik. 2016. Vol. 88, N3, pp. 264-273.

84. Scheffler F., Zampieri A., Schwieger W., Zeschky J., Scheffler M., Greil P. Zeolite covered polymer derived ceramic foams: novel hierarchical pore systems for sorption and catalysis //Advances in applied ceramics. 2005. Vol. 104, N1, pp. 43-48.

85. Liu X., Wang H., Xu Q., Luo Q., Song Y., Tian Y., Chen M., Xuan Y., Jin Y., Jua Y., Li Y., Ding, Y. High thermal conductivity and high energy density compatible latent heat thermal energy storage enabled by porous AlN ceramics composites //International Journal of Heat and Mass Transfer. 2021. Vol. 175, pp. 121405.

86. Wang X., Wei K., Tao Y., Yang X., Zhou H., He R., Fang D. Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels //Composite Structures. 2019. Vol. 209, pp. 523-534.

87. Binner J., Porter M., Baker B., Zou J., Venkatachalam V., Diaz V. R., D’Angio A., Ramanujam P., Zhang T., Murthy T. S. R. C. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs–a review //International Materials Reviews. 2020. Vol. 65, N7, pp. 389-444.

88. Rubio V., Ramanujam P., Cousinet S., LePage G., Ackerman T., Hussain A., Brown P., Dutremonte I., Binner J. Thermal properties and performance of carbon fiber‐based ultra‐high temperature ceramic matrix composites (Cf‐UHTCMCs) //Journal of the American Ceramic Society. 2020. Т. 103. №. 6. С. 3788-3796.

89. Bull J. D., Rasky D. J., Karika J. C. Stability characterization of diboride composites under high velocity atmospheric flight conditions //Proceedings of advancements in synthesis and processes. 1992.

90. Nieto A., Bisht A., Lahiri D., Zhang C., Agarwal A. Graphene reinforced metal and ceramic matrix composites: a review //International Materials Reviews. 2017. Vol. 62, N5, pp. 241-302.

91. Cho J., Boccaccini A. R., Shaffer M. S. P. Ceramic matrix composites containing carbon nanotubes //Journal of Materials Science. 2009. Vol. 44, pp. 1934-1951.

92. Arai Y., Inoue R., Goto K., Kogo Y. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review //Ceramics International. 2019. Vol. 45, N12, pp. 14481- 14489.

93. Lv X., Ye F., Cheng L., Zhang L. Novel processing strategy and challenges on whisker-reinforced ceramic matrix composites //Composites Part A: Applied Science and Manufacturing. 2022. pp. 106974.


Рецензия

Для цитирования:


Соловьева О.В., Соловьев С.А., Шакурова Р.З. Обзор современных керамических ячеистых материалов и композитов, применяемых в теплотехнике. Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2023;25(1):82-104. https://doi.org/10.30724/1998-9903-2023-25-1-82-104

For citation:


Soloveva O.V., Solovev S.A., Shakurova R.Z. Review of modern ceramic cellular materials and composites used in heat engineering. Power engineering: research, equipment, technology. 2023;25(1):82-104. (In Russ.) https://doi.org/10.30724/1998-9903-2023-25-1-82-104

Просмотров: 483


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)