Preview

Power engineering: research, equipment, technology

Advanced search

Review of modern ceramic cellular materials and composites used in heat engineering

https://doi.org/10.30724/1998-9903-2023-25-1-82-104

Abstract

THE PURPOSE. Cellular ceramic materials and composites have found application in many industries: energy, chemical industry, construction, aerospace. Due to their high thermomechanical properties, resistance to high temperatures and low density, cellular ceramic materials are widely used as heat exchangers for heat recovery from exhaust gases of gas turbine engines, combined-cycle plants, industrial furnaces, etc. The purpose of this work is to review modern cellular ceramic materials and composites used in heat engineering and having different structure, properties and chemical composition.

METHODS. We have carried out a broad review of the literature on ceramic cellular materials and composites. We studied both domestic and foreign literature.

RESULTS. The analysis of cellular ceramic materials with a regular (lattices) and random (foam) structure has been carried out. The main factors influencing the properties of ceramic foams and lattices are analyzed. Also, the main methods for the production of ceramic materials were studied, their advantages and disadvantages were revealed. A review of modern composite materials based on a ceramic matrix reinforced with carbon nanotubes, graphene nanoplates, and carbon fibers has been carried out.

CONCLUSION. The properties of ceramic cellular materials, as well as their areas of application, depend on the production methods and the structure of the material. Open-cell foams are used as filters, heat exchangers, while closed-cell foams are used as thermal insulation. Applications for ceramic lattices are limited by the precision, resolution, and size of 3D printing. Thus, the improvement of additive manufacturing technologies will improve the characteristics of ceramic gratings and expand their areas of application.

About the Authors

O. V. Soloveva
Kazan State Power Engineering University
Russian Federation

Olga V. Soloveva

Kazan



S. A. Solovev
Kazan State Power Engineering University
Russian Federation

Sergei A. Solovev

Kazan



R. Z. Shakurova
Kazan State Power Engineering University
Russian Federation

Rozalina Z. Shakurova

Kazan



References

1. Jouhara H., Khordehgah N., Almahmoud S., Delpech B., Chauhan A., Tassou S. A. Waste heat recovery technologies and applications. Thermal Science and Engineering Progress. 2018; 6:268-289. doi: 10.1016/j.tsep.2018.04.017

2. Zhang C., Gümmer V. High temperature heat exchangers for recuperated rotorcraft powerplants. Applied Thermal Engineering. 2019;154:548-561. doi: 10.1016/j.applthermaleng.2019.03.119

3. Sommers A., Wang Q., Han X., T'Joen C., Park Y., Jacobi A Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—A review. Applied Thermal Engineering. 2010; 30(11-12):1277-1291. doi: 10.1016/j.applthermaleng.2010.02.018

4. Smyth R. The use of high temperature heat exchangers to increase power plant thermal efficiency. IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No. 97CH6203). IEEE. 1997; 3:1690-1695. doi: 10.1109/IECEC.1997.656676

5. Liu H. C., Tsuru H., Cooper A. G., Prinz F. B. Rapid prototyping methods of silicon carbide micro heat exchangers. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2005; 219(7):525-538. doi: 10.1243/095440505X32463

6. Dai H., Lin B., Ji K., Wang C., Li Q., Zheng Y., Wang K. Combustion characteristics of low-concentration coal mine methane in ceramic foam burner with embedded alumina pellets. Applied Thermal Engineering. 2015;90: 489-498. doi: 10.1016/j.applthermaleng.2015.07.029

7. Xu Z., Lu Y., Wang B., Zhao L., Xiao Y. Experimental study on the off-design performances of a micro humid air turbine cycle: Thermodynamics, emissions and heat exchange. Energy. 2021;219:119660. doi: 10.1016/j.energy.2020.119660

8. Zhou W., Wu P., Zhang L., Zhu D., Zhao X., Cai Y. Heavy metal ions and particulate pollutants can be effectively removed by a gravity-driven ceramic foam filter optimized by carbon nanotube implantation. Journal of Hazardous Materials. 2022;421:126721. doi: 10.1016/j.jhazmat.2021.126721

9. Shumilov V., Kirilin A., Tokarev A., Boden S., Schubert M., Hampel U., Hupa, L., Salmin, T., Murzin D. Y. Preparation of γ-Al2O3/α-Al2O3 ceramic foams as catalyst carriers via the replica technique. Catalysis Today. 2022;383:64-73. doi: 10.1016/j.cattod.2020.09.019

10. Rainer A., Giannitelli S. M., Abbruzzese F., Traversa E., Licoccia S.,Trombetta M. Fabrication of bioactive glass–ceramic foams mimicking human bone portions for regenerative medicine. Acta Biomaterialia. 2008;4(2):362-369. doi: 10.1016/j.actbio.2007.08.007

11. Chen Y., Wang N., Ola O., Xia Y., Zhu Y. Porous ceramics: Light in weight but heavy in energy and environment technologies. Materials Science and Engineering: R: Reports. 2021;143:100589. doi: /10.1016/j.mser.2020.100589

12. Hardy D., Green D. J. Mechanical properties of a partially sintered alumina. Journal of the European Ceramic Society. 1995; 15(8):769-775. doi: 10.1016/0955-2219(95)00045-V

13. Chakravarty D., Ramesh H., Rao T. N. High strength porous alumina by spark plasma sintering. Journal of the European Ceramic Society. 2009; 29(8):1361-1369. doi: 10.1016/j.jeurceramsoc.2008.08.021

14. Diaz A., Hampshire S., Yang J. F., Ohji T., Kanzaki S. Comparison of mechanical properties of silicon nitrides with controlled porosities produced by different fabrication routes. Journal of the American Ceramic Society. 2005; 88(3):698-706. doi: 10.1111/j.1551-2916.2005.00132.x

15. Ohji T. Microstructural design and mechanical properties of porous silicon nitride ceramics. Materials Science and Engineering: A. 2008;498(1-2):5-11. doi: 10.1016/j.msea.2007.09.104

16. Fukushima M. Microstructural control of macroporous silicon carbide. Journal of the Ceramic Society of Japan. 2013;121(1410):162-168. doi: 10.2109/jcersj2.121.162

17. Hotta M., Kita H., Matsuura H., Enomoto N., Hojo J. Pore-size control in porous SiC ceramics prepared by spark plasma sintering. Journal of the Ceramic Society of Japan. 2012; 120(1402):243-247. doi: 10.2109/jcersj2.120.243

18. Jin X., Zhang X., Han J., Hu P., He R. Thermal shock behavior of porous ZrB2–SiC ceramics. Materials Science and Engineering: A. 2013; 588: 175-180. doi: 10.1016/j.msea.2013.09.046

19. Yuan H., Li J., Shen Q., Zhang L. Preparation and thermal conductivity characterization of ZrB2 porous ceramics fabricated by spark plasma sintering. International Journal of Refractory Metals and Hard Materials. 2013; 36:225-231. doi: 10.1016/j.ijrmhm.2012.09.003

20. Karl S., Somers A. V. Method of making porous ceramic articles : пат. 3090094 США. 1963.

21. Soy U., Demir A. Fabrication and optimization of boron carbide foams by polymeric sponge replication. Emerging Materials Research. 2020; 9(2):388-395. doi: 10.1680/jemmr.20.00046

22. Luyten J., Thijs I., Vandermeulen W., Mullens S., Wallaeys B., Mortelmans R. Strong ceramic foams from polyurethane templates. Advances in applied ceramics. 2005; 104(1):4-8. doi: 10.1179/174367605225010990

23. Hooshmand S., Nordin J., Akhtar F. Porous alumina ceramics by gel casting: Effect of type of sacrificial template on the properties. International Journal of Ceramic Engineering & Science. 2019; 1(2):77-84. doi: 10.1002/ces2.10013

24. Ciurans Oset M., Nordin J., Akhtar F. Processing of macroporous alumina ceramics using pre-expanded polymer microspheres as sacrificial template. Ceramics. 2018; 1(2):329-342. doi: 10.3390/ceramics1020026

25. Leng Q., Yao D., Xia Y., Liang H., Zeng Y. P Microstructure and permeability of porous zirconia ceramic foams prepared via direct foaming with mixed surfactants. Journal of the European Ceramic Society. 2022; 42(16):7528-7537. doi: 10.1016/j.jeurceramsoc.2022.08.060

26. Du Z., Yao D., Xia Y., Zuo K., Yin J., Liang H., Zeng Y. P. The high porosity silicon nitride foams prepared by the direct foaming method. Ceramics International. 2019; 45(2):2124-2130. doi: 10.1016/j.ceramint.2018.10.118

27. Gregorová E., Pabst W., Uhlířová T., Nečina V., Veselý M., Sedlářová I. Processing, microstructure and elastic properties of mullite-based ceramic foams prepared by direct foaming with wheat flour. Journal of the European Ceramic Society. 2016; 36(1): 109-120. doi: 10.1016/j.jeurceramsoc.2015.09.028

28. Barg S., Soltmann C., Andrad M., Koch D., Grathwohl G. Cellular ceramics by direct foaming of emulsified ceramic powder suspensions. Journal of the American Ceramic Society. 2008; 91(9): 2823-2829. doi: 10.1111/j.1551-2916.2008.02553.x

29. Axinte S. M., Paunescu L., Dragoescu M. F. Silicon carbide ceramic foam produced by direct microwave heating. Revista de Tehnologii Neconventionale. 2020; 24(2): 45-51.

30. Pradhan M., Bhargava P. Effect of Additives on Ceramic Foam Microstructure Processed by Direct Foaming of Aqueous Slurries. Transactions of the Indian Ceramic Society. 2004; 63(3): 151-154. doi: 10.1080/0371750X.2004.11012153

31. Chen A. N., Li M., Xu J., Lou C. H., Wu J. M., Cheng L. J., Shi Y. S., Li C. H. High-porosity mullite ceramic foams prepared by selective laser sintering using fly ash hollow spheres as raw materials. Journal of the European Ceramic Society. 2018; 38(13):4553-4559. doi: 10.1016/j.jeurceramsoc.2018.05.031

32. Liu S. S., Li M., Wu J. M., Chen A. N., Shi Y. S., Li C. H. Preparation of high-porosity Al2O3 ceramic foams via selective laser sintering of Al2O3 poly-hollow microspheres. Ceramics International. 2020; 46(4): 4240-4247. doi: 10.1016/j.ceramint.2019.10.144

33. Medri V., Mazzocchi M., Bellosi A. ZrB2‐based sponges and lightweight devices. International Journal of Applied Ceramic Technology. 2011;8(4): 815-823. doi: 10.1111/j.1744-7402.2010.02512.x

34. Innocentini M. D., Sepulveda P., Salvini V. R., Pandolfelli V. C., Coury J. R. Permeability and structure of cellular ceramics: a comparison between two preparation techniques. Journal of the American Ceramic Society. 1998;81(12): 3349-3352. doi: 10.1111/j.1151-2916.1998.tb02782.x

35. Soy U., Demir A., Caliskan F. Effect of bentonite addition on fabrication of reticulated porous SiC ceramics for liquid metal infiltration. Ceramics International. 2011;37(1):5-19. doi: 10.1016/j.ceramint.2010.07.028

36. Yao X., Tan S., Zhang X., Huang Z., Jiang D. Low-temperature sintering of SiC reticulated porous ceramics with MgO–Al 2 O 3–SiO 2 additives as sintering aids. Journal of materials science. 2007;42: 4960-4966. doi: 10.1007/s10853-006-0473-1

37. Yao X., Tan S., Huang Z., Jiang D. Effect of recoating slurry viscosity on the properties of reticulated porous silicon carbide ceramics. Ceramics International. 2006;32(2):137-142. doi: 0.1016/j.ceramint.2005.01.008

38. Chae S. H., Kim Y. W., Song I. H., Kim H. D., Narisawa M. Porosity control of porous silicon carbide ceramics. Journal of the European Ceramic Society. 2009;29(13):-2872. doi: 10.1016/j.jeurceramsoc.2009.03.027

39. Eom J. H., Kim Y. W. Effect of template size on microstructure and strength of porous silicon carbide ceramics. Journal of the Ceramic Society of Japan. 2008;116(1358):1159-1163. doi: 10.2109/jcersj2.116.1159

40. Soloveva O., Solovev S., Talipova A., Sagdieva T., Golubev Y. Study of heat transfer in a heat exchanger with porous granules for use in transport. Transportation Research Procedia. 2022;63: 1205-1210. doi: 10.1016/j.trpro.2022.06.126

41. Soloveva O., Solovev S., Talipova A., Shakurova R., Sabirova J. Study of the heat transfer efficiency of spring elements for use in transport. Transportation Research Procedia. 2022;63:1007-1014. doi: 10.1016/j.trpro.2022.06.100

42. Solovev S. A., Soloveva O. V., Akhmetova I. G., Vankov Y. V., Paluku D. L. Numerical simulation of heat and mass transfer in an open-cell foam catalyst on example of the acetylene hydrogenation reaction. ChemEngineering. 2022;6(1):11. doi: 10.3390/chemengineering6010011

43. Soloveva O., Solovev S., Talipova A. Issledovanie vliyaniya poristosti voloknistogo materiala na znachenie energeticheskoj effektivnosti. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. 2022;14(1):53.

44. Soloveva O., Solovev S., Vankov Y., Akhmetova I., Shakurova R., Talipova A. Issledovanie vliyaniya geometrii vysokoporistogo yacheistogo materiala na znachenie energeticheskoj effektivnosti. Power engineering: research, equipment, technology. 2022;24(3):55-69. doi: 10.30724/1998-9903-2022-24-3-55-65

45. Wu Z., Caliot C., Bai F., Flamant G., Wang Z., Zhang J., Tian C. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications. Applied Energy. 2010;87(2): 504-513. doi: 10.1016/j.apenergy.2009.08.009

46. Wu Z., Caliot C., Flamant G., Wang Z. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances. International Journal of Heat and Mass Transfer. 2011;54(7-8):1527-1537. doi: 10.1016/j.ijheatmasstransfer.2010.11.037

47. Patil V. R., Kiener F., Grylka A., Steinfeld A. Experimental testing of a solar air cavity-receiver with reticulated porous ceramic absorbers for thermal processing at above 1000 C. Solar Energy. 2021;214:72-85. doi: 10.1016/j.solener.2020.11.045

48. Iasiello M., Bianco N., Chiu W. K., Naso V. The effects of variable porosity and cell size on the thermal performance of functionally-graded foams. International Journal of Thermal Sciences. 2021;160:106696. doi: 10.1016/j.ijthermalsci.2020.106696

49. Richardson J. T., Peng Y., Remue D. Properties of ceramic foam catalyst supports: pressure drop. Applied Catalysis A: General. 2000;204(1):19-32. doi: 10.1016/S0926-860X(00)00508-1

50. Barreto G., Canhoto P., Collares-Pereira M. Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam. Energy. 2020;200:117476. doi: 10.1016/j.energy.2020.117476

51. Pusterla S., Ortona A., D’Angelo C., Barbato M. The influence of cell morphology on the effective thermal conductivity of reticulated ceramic foams. Journal of Porous Materials. 2012;19(3):307-315. doi: 10.1007/s10934-011-9477-6

52. Yeranee K., Rao Y. A Review of Recent Investigations on Flow and Heat Transfer Enhancement in Cooling Channels Embedded with Triply Periodic Minimal Surfaces (TPMS). Energies. 2022;15(23):8994. doi: 10.3390/en15238994

53. Hu C., Sun M., Xie Z., Yang L., Song Y., Tang D., Zhao J. Numerical simulation on the forced convection heat transfer of porous medium for turbine engine heat exchanger applications. Applied Thermal Engineering. 2020;180:115845. doi: 10.1016/j.applthermaleng.2020.115845

54. Xu S., Wu Z., Lu H., Yang L. Experimental Study of the Convective Heat Transfer and Local Thermal Equilibrium in Ceramic Foam. Processes. 2020;8(11):490. doi: 10.3390/pr8111490

55. You Y., Huang H., Shao G., Hu J., Xu X., Luo X. A three-dimensional numerical model of unsteady flow and heat transfer in ceramic honeycomb regenerator. Applied Thermal Engineering. 2016;108:1243-1250. doi: 10.1016/j.applthermaleng.2016.08.035

56. Zhang X., Zhang K., Zhang L., Wang W., Li Y., He R. Additive manufacturing of cellular ceramic structures: From structure to structure-function integration. Materials & Design. 2022;110470. doi: 10.1016/j.matdes.2022.110470

57. Arshad A. B., Nazir A., Jeng J. Y. The effect of fillets and crossbars on mechanical properties of lattice structures fabricated using additive manufacturing. The International Journal of Advanced Manufacturing Technology. 2020;111:931-943. doi: 10.1007/s00170-020-06034-x

58. Zhao M., Liu F., Fu G., Zhang D. Z., Zhang T., Zhou H. Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM. Materials. 2018;11(12):С. 2411. doi: 10.3390/ma11122411

59. Sereshk M. R. V., Triplett K., St John C., Martin, K., Gorin S., Avery A., Byer E., Conner S. P., Arash S. T., Shamsaei N. A Computational and Experimental Investigation into Mechanical Characterizations of Strut-Based Lattice Structures. 2019 International Solid Freeform Fabrication Symposium. University of Texas at Austin. 2019. doi: 10.26153/tsw/17472

60. Nazir A., Arshad A. B., Lin S. C., Jeng J. Y. Mechanical Performance of Lightweight-Designed Honeycomb Structures Fabricated Using Multijet Fusion Additive Manufacturing Technology. 3D Printing and Additive Manufacturing. 2022;9(4):311-325. doi: 10.1089/3dp.2021.0004

61. 2Maskery I., Sturm L., Aremu A. O., Panesar A., Williams C. B., Tuck C. J., Wildman R. D., Ashcroft I. A., Hague R. J. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer. 2018;152:62-71. doi: 10.1016/j.polymer.2017.11.049

62. AlMahri S., Santiago R., Lee D. W., Ramos H., Alabdouli H., Alteneiji M., guan Z., Cantwell W., Alves M. Evaluation of the dynamic response of triply periodic minimal surfaces subjected to high strain-rate compression. Additive Manufacturing. 2021;46:102220. doi: 10.1016/j.addma.2021.102220

63. Kovacev N., Li S., Zeraati-Rezaei S., Hemida H., Tsolakis A., Essa K. Effects of the internal structures of monolith ceramic substrates on thermal and hydraulic properties: additive manufacturing, numerical modelling and experimental testing. The International Journal of Advanced Manufacturing Technology. 2021;112:1115-1132. doi: 10.1007/s00170-020-06493-2

64. Wu Y., Zhi C., Wang Z., Chen Y., Wang C., Chen Q., Tan G., Ming T. Enhanced thermal and mechanical performance of 3D architected micro-channel heat exchangers. Heliyon. 2023. doi: 10.1016/j.heliyon.2023.e13902

65. Pelanconi M., Barbato M., Zavattoni S., Vignoles G. L., Ortona A. Thermal design, optimization and additive manufacturing of ceramic regular structures to maximize the radiative heat transfer. Materials & Design. 2019;163:107539. doi: 10.1016/j.matdes.2018.107539

66. Khalil M., Ali M. I. H., Khan K. A., Al-Rub R. A. Forced convection heat transfer in heat sinks with topologies based on triply periodic minimal surfaces. Case Studies in Thermal Engineering. 2022;38:102313. doi: 10.1016/j.csite.2022.102313

67. Tang W., Zhou H., Zeng Y., Yan M., Jiang C., Yang P., Li Q., Li Z., Fu J., Huang Y., Zhao Y. Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp //International Journal of Heat and Mass Transfer. 2023. Т. 201. С. 123642. doi: 10.1016/j.ijheatmasstransfer.2022.123642

68. Maurath J., Willenbacher N. 3D printing of open-porous cellular ceramics with high specific strength. Journal of the European Ceramic Society. 2017;37(15):4833-4842. doi: 10.1016/j.jeurceramsoc.2017.06.001

69. Ševeček O., Papšík R., Majer Z., Kotoul M. Influence of the cell geometry on the tensile strength of open-cell ceramic foams. Procedia Structural Integrity. 2019;23:553-558. doi: 10.1016/j.prostr.2020.01.144

70. Hegazi H. A., Mokhtar A. H. Optimum Design of Hexagonal Cellular Structures Under Thermal and Mechanical Loads. 2020;9(6):IJERTV9IS060813

71. Yuan F., Wang H., Zhou P., Xu A., He D. Heat transfer performances of honeycomb regenerators with square or hexagon cell opening. Applied Thermal Engineering. 2017;125:798. doi: 10.1016/j.applthermaleng.2017.07.079

72. Wen T., Tian J., Lu T. J., Queheillalt D. T., Wadley H. N. G. Forced convection in metallic honeycomb structures. International Journal of Heat and Mass Transfer. 2006.;49(19-20):3313-3324. doi: 10.1016/j.ijheatmasstransfer.2006.03.024

73. Liu H., Yu Q. N., Zhang Z. C., Qu Z. G., Wang C. Z Two-equation method for heat transfer efficiency in metal honeycombs: An analytical solution. International Journal of Heat and Mass Transfer. 2016;97:201-210. doi: 10.1016/j.ijheatmasstransfer.2016.01.020

74. Ozsipahi M., Subasi A., Gunes H., Sahin B. Numerical investigation of hydraulic and thermal performance of a honeycomb heat sink. International Journal of Thermal Sciences. 2018;134:500-506. doi: 10.1016/j.ijthermalsci.2018.07.034

75. Papakokkinos G., Castro J., Oliet C., Oliva A. Computational investigation of the hexagonal honeycomb adsorption reactor for cooling applications. Applied Thermal Engineering. 2022;202:117807. doi: 10.1016/j.applthermaleng.2021.117807

76. Radhika N., Sathish M. A review on Si-based ceramic matrix composites and their infiltration based techniques. Silicon. 2022;14(16):10141-10171. doi: 10.1007/s12633-022-01763-y

77. Dhanasekar S., Ganesan A. T., Rani T. L., Vinjamuri V. K., Rao M. N., Shankar E., Dharamvir P., Kumar S., Golie W. M. A Comprehensive Study of Ceramic Matrix Composites for Space Applications. Advances in Materials Science and Engineering. 2022. doi: 10.1155/2022/6160591

78. de Salazar J. G., Barrena M. I., Morales G., Matesanz L., Merino N. Compression strength and wear resistance of ceramic foams–polymer composites. Materials Letters. 2006;60(13-14):687-1692. doi: 10.1016/j.matlet.2005.11.092

79. Ren Z. H., Jin P., Cao X. M., Zheng Y. G., Zhang J. S. Mechanical properties and slurry erosion resistance of SiC ceramic foam/epoxy co-continuous phase composite. Composites Science and Technology. 2015;107:129-136. doi: 10.1016/j.compscitech.2014.12.012

80. Han N., Yao Z., Ye H., Zhang C., Liang P., Sun H., wang S., Liu S. Efficient removal of organic pollutants by ceramic hollow fibre supported composite catalyst. Sustainable Materials and Technologies. 2019;20:e00108. doi: 10.1016/j.susmat.2019.e00108

81. Qiu L., Yan K., Feng Y., Liu X., Zhang X. Bionic hierarchical porous aluminum nitride ceramic composite phase change material with excellent heat transfer and storage performance. Composites Communications. 2021;27:00892. doi: 10.1016/j.coco.2021.100892

82. Betke U., Proemmel S., Rannabauer S., Lieb A., Scheffler M., Scheffler F. Silane functionalized open-celled ceramic foams as support structure in metal organic framework composite materials. Microporous and Mesoporous Materials. 2017;239:220. doi: 10.1016/j.micromeso.2016.10.011

83. Betke U., Proemmel S., Eggebrecht J. G., Rannabauer S., Lieb A., Scheffler,M., Scheffler F. Micro‐Macroporous Composite Materials: SiC Ceramic Foams Functionalized With the Metal Organic Framework HKUST‐1. Chemie Ingenieur Technik. 2016;88(3):64-273. doi: 10.1002/cite.201500141

84. Scheffler F., Zampieri A., Schwieger W., Zeschky J., Scheffler M., Greil P. Zeolite covered polymer derived ceramic foams: novel hierarchical pore systems for sorption and catalysis. Advances in applied ceramics. 2005;104(1):43-48. doi: 10.1179/174367605225011016

85. Liu X., Wang H., Xu Q., Luo Q., Song Y., Tian Y., Chen M., Xuan Y., Jin Y., Jua Y., Li Y., Ding, Y. High thermal conductivity and high energy density compatible latent heat thermal energy storage enabled by porous AlN ceramics composites. International Journal of Heat and Mass Transfer. 2021;175:21405. doi: 10.1016/j.ijheatmasstransfer.2021.121405

86. Wang X., Wei K., Tao Y., Yang X., Zhou H., He R., Fang D. Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels. Composite Structures. 2019;209:523-534. doi: 10.1016/j.compstruct.2018.11.004

87. Binner J., Porter M., Baker B., Zou J., Venkatachalam V., Diaz V. R., D’Angio A., Ramanujam P., Zhang T., Murthy T. S. R. C. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs–a review. International Materials Reviews. 2020;65(7):89-444. doi: 10.1080/09506608.2019.1652006

88. Rubio V., Ramanujam P., Cousinet S., LePage G., Ackerman T., Hussain A., Brown P., Dutremonte I., Binner J. Thermal properties and performance of carbon fiber‐based ultra‐high temperature ceramic matrix composites (Cf‐UHTCMCs). Journal of the American Ceramic Society. 2020;103(6):3788-3796. doi: 10.1111/jace.17043

89. Bull J. D., Rasky D. J., Karika J. C. Stability characterization of diboride composites under high velocity atmospheric flight conditions. Proceedings of advancements in synthesis and processes. 1992.

90. Nieto A., Bisht A., Lahiri D., Zhang C., Agarwal A. Graphene reinforced metal and ceramic matrix composites: a review. International Materials Reviews. 2017;62(5):41-302. doi: 10.1080/09506608.2016.1219481

91. Cho J., Boccaccini A. R., Shaffer M. S. P. Ceramic matrix composites containing carbon nanotubes. Journal of Materials Science. 2009;44:1934-1951. doi: 10.1007/s10853-009-3262-9

92. Arai Y., Inoue R., Goto K., Kogo Y. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review. Ceramics International. 2019;45(2):14481-14489. doi: 10.1016/j.ceramint.2019.05.065

93. Lv X., Ye F., Cheng L., Zhang L. Novel processing strategy and challenges on whisker-reinforced ceramic matrix composites. Composites Part A: Applied Science and Manufacturing. 2022;106974. doi: 10.1016/j.compositesa.2022.106974


Review

For citations:


Soloveva O.V., Solovev S.A., Shakurova R.Z. Review of modern ceramic cellular materials and composites used in heat engineering. Power engineering: research, equipment, technology. 2023;25(1):82-104. (In Russ.) https://doi.org/10.30724/1998-9903-2023-25-1-82-104

Views: 484


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)