Preview

Power engineering: research, equipment, technology

Advanced search

Generation of critical acoustic pulses in high-voltage insulators due to induced fields of partial discharges

https://doi.org/10.30724/1998-9903-2023-25-1-154-165

Abstract

THE PURPOSE of the article is to discuss an updated survey of the technical condition of porcelain high-voltage insulators of the type IOS 110/400, which had defects with partial discharge intensities above 4 nC, at Tatenergo substations. The experiments were carried out with simultaneous use of electromagnetic and acoustic research methods.

During the analysis of the RESULTS obtained, the influence of the fields of previous powerful partial discharges on the technical condition of high-voltage insulators was established. The physical features of detecting powerful partial discharges by electromagnetic and acoustic methods have been studied. The conducted studies allow us to draw the following.

CONCLUSIONS: the previous partial discharges can create additional long-lived electric fields on the dielectric surfaces of defects that exceed the field of the applied operating voltage in intensity; the necessity of using both physical methods simultaneously in the examination of high-voltage insulators in operation is shown.

About the Authors

V. A. Golenishchev-Kutuzov
Kazan State Power Engineering University
Russian Federation

Vadim A. Golenishchev-Kutuzov

Kazan



A. V. Golenishchev-Kutuzov
Kazan State Power Engineering University
Russian Federation

Aleksandr V. Golenishchev-Kutuzov

Kazan



A. V. Semenikov
Kazan State Power Engineering University
Russian Federation

Anton V. Semennikov

Kazan



G. D. Mardanov
Kazan Law Institute of the Ministry of Internal Affairs of the Russian Federation
Russian Federation

Georgij D. Mardanov

Kazan



R. I. Kalimullin
Kazan State Power Engineering University
Russian Federation

Rustem I. Kalimullin

Kazan



D. A. Ivanov
Kazan State Power Engineering University
Russian Federation

Dmitrij A. Ivanov

Kazan



References

1. Kuchinskii GS. Chastichnye razryady v vysokovol'tnykh konstruktsiyakh. Leningrad: Ehnergiya; 1979.

2. Vershinin YuN. Elektronno-teplovye i detonacionnye processy pri elektricheskom proboe tverdyh dielektrikov. Ekaterinburg: Izdatel'stvo UrO RAN, 2000.

3. Hikita M, Yamada K, Nakamura A, et. al. Measurements of partial discharges by computer and analysis of partial discharge distribution by the Monte Carlo method. IEEE Transactions on Electrical Insulation. 1990; 25(3):453–468. doi: 10.1109/14.55716

4. Morshuis PHF, Kreuger FH. Transition from streamer to Townsend mechanisms in dielectric voids. Journal of Physics D: Applied Physics. 1990; 23(12):1562–1568. doi: 10.1088/0022-3727/23/12/012

5. Avvakumov MV, Golenishchev-Kutuzov AV. Research of partial discharges at electric breakdown of pattern from electrotechnical porcelain. Power engineering: research, equipment, technology. 2003; 9-10:134–140.

6. Vdoviko VP. Chastichnye razryady v diagnostirovanii vysokovol'tnogo oborudovaniya. Novosibirsk: Nauka; 2007. (In Russ).

7. Korobeinikov SM, Ovchinnikov AG. Fizicheskie mekhanizmy chastichnykh razryadov. Novosibirsk: Izdatel'stvo NGTU; 2022. (In Russ).

8. Golenishchev-Kutuzov AV, Golenishchev-Kutuzov VA, Mardanov GD, et. al. Integrated remote diagnostics of high-voltage insulators. Power engineering: research, equipment, technology. 2013; 9-10:69–72.

9. Golenishchev-Kutuzov AV, Golenishchev-Kutuzov VA, Ivanov DA, et. al. A comprehensive method for remote monitoring of the high-voltage insulators. Power engineering: research, equipment, technology. 2016; 18(5-6):87–93.

10. Golenishchev-Kutuzov AV, Golenishchev-Kutuzov VA, Khusnutdinov RA, et. al. Kompleksnyi distantsionnyi kontrol' vysokovol'tnykh izolyatorov v usloviyakh ehkspluatatsii. Russian Electrical Engineering. 2017; 2:71–73. (In Russ).

11. Ilknechi HD, Samimi MH, Yousefvand R. Generation of acoustic phase-resolved partial discharge patterns by utilizing UHF signals. International Journal of Electrical Power & Energy Systems. 2019; 113:906–915. doi: https://doi.org/10.1016/j.ijepes.2019.06.018

12. Golenishchev-Kutuzov AV, Golenishchev-Kutuzov VA, Ivanov DA, et. al. Sposob beskontaktnoi distantsionnoi diagnostiki sostoyaniya vysokovol'tnykh izolyatorov. Patent RUS №2679759. 12.02.2019. Byul. №5. (In Russ).

13. Golenishchev-Kutuzov AV, Golenishchev-Kutuzov VA, Ivanov DA, et. al. Integrated noncontact diagnostics of the operable condition of high-voltage insulators. Russian Journal of Nondestructive Testing. 2019; 55(8):596–602. doi: 10.1134/S1061830919080060

14. Golenishchev-Kutuzov AV, Golenishchev-Kutuzov VA, Ivanov DA, et al. Effect of partial discharges on the operating condition of high voltage insulators. E3S Web of Conferences. 2019: 124:03001. doi: https://doi.org/10.1051/e3sconf/201912403001

15. Illias HA, Chen G, Lewin PL. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events. Journal of Physics D: Applied Physics. 2011; 44(24):245202. doi: 10.1088/0022-3727/44/24/245202

16. Golenishchev-Kutuzov AV, Golenishchev-Kutuzov VA, Ivanov DA, et. al. Remote testing for defects in in-service high-voltage insulators. Russian Journal of Nondestructive Testing. 2018; 54(10):682–686. doi: 10.1134/S1061830918100054

17. Pan Ch, Wu K, Chen G, et. al. Understanding partial discharge behavior from the memory effect induced by residual charges: a review. IEEE Transactions on Dielectrics and Electrical Insulation. 2020; 27(6):1951–1965. doi: 10.1109/TDEI.2020.008960

18. Borghei M, Ghassemi M, Rodriguez-Serna JM, Albarracin-Sanchez R. A finite element analysis and an improved induced charge concept for partial discharge modeling. IEEE Transactions on Power Delivery. 2020; 36(4):2570–2581. doi: 10.1109/TPWRD.2020.2991589

19. Golenishchev-Kutuzov VA, Golenishchev-Kutuzov AV, Semennikov AV, et al. Laser-electric way of controlling defects in high voltage dielectric elements. Bulletin of the Russian Academy of Sciences: Physics. 2022; 86(11):1376–1378. doi: 10.3103/S1062873822110156

20. Nikonov V, Bartnicas R, Wertheimer MR. The influence of dielectric surface charge distribution upon the partial discharge behavior in short air gaps. IEEE Transactions on Plasma Science. 2001; 29(6):866–874. doi: 10.1109/27.974972

21. Kuz'min GN, editors. Skol'zyashchii razryad. Fizicheskaya ehntsiklopediya. V 5-ti tomakh. Moscow: Bol'shaya Rossiiskaya ehntsiklopediya; 1994. Vol. 4. P. 544. (In Russ).

22. Rashba EhI, editors. Deformatsionnyi potentsial. Fizicheskaya ehntsiklopediya. V 5-ti tomakh. Moscow: Sovetskaya ehntsiklopediya; 1988. Vol. 1. P. 598. (In Russ).

23. Florkowski M. Influence of harmonics on partial discharge measurements and interpretation of phase-resolved patterns. Measurement. 2022; 196:111198. doi: https://doi.org/10.1016/j.measurement.2022.111198

24. Ramirez-Nino J, Pascacio A. Acoustic measuring of partial discharge in power transformers. Measurement Science and Technology. 2009; 20(11):115108. doi: 10.1088/0957-0233/20/11/115108


Review

For citations:


Golenishchev-Kutuzov V.A., Golenishchev-Kutuzov A.V., Semenikov A.V., Mardanov G.D., Kalimullin R.I., Ivanov D.A. Generation of critical acoustic pulses in high-voltage insulators due to induced fields of partial discharges. Power engineering: research, equipment, technology. 2023;25(1):154-165. (In Russ.) https://doi.org/10.30724/1998-9903-2023-25-1-154-165

Views: 264


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)