Preview

Power engineering: research, equipment, technology

Advanced search

Local power flow control

https://doi.org/10.30724/1998-9903-2023-25-5-74-82

Abstract

Show  the  prospects  for  the  development  of  local  electric  networks  with distributed generation. Recent changes in the electric power industry are forcing the revision of the  requirements  for  both  infrastructure  and  power  facilities.  Show  that  the  connection  of distributed generators and consumers of electrical energy to the network is fraught with certain difficulties.  Solving  the  problem  of  high-quality  and  uninterrupted  power  supply  to  consumers requires  a  new  approach  associated  with  the  use  of  modern  Smart  Grid  technologies,  equally related to energy and information technology. It is noted that for the implementation of such a large-scale  task,  the  "road  map"  "Energynet"  of  the  National  Technology  Initiative  was developed,  among  the  main  directions  of  which  are  the  digitalization  of  the  infrastructure  of distribution  networks  and  the  deep  decentralization  of  electricity  production.  Consider,  in accordance  with  the  identified  areas,  the  segments  of  the  smart  energy  market,  which include: reliable  and  flexible  distribution  grids,  smart  distributed  energy  and  consumer  services. Propose  a solution  to  the  problem  using  the  example  of  a  local  low  voltage  microgrid  with distributed  generation.  METHODS.  The  solution  to  the  problem  is  proposed  on  the  basis  of creating  a  simulation  model,  with  the  help of  which  it  is possible  to  perform  a  number  of  tests and obtain the optimal network mode within a given error area. implement various options for the structure of the microgrid, the number and type of generators, the load level. The structural diagram  of  the  local  network  is  proposed.  RESULTS.  The  article  describes  the  process  of managing  power  flows  between  producers  (local  distributed  sources)  and  consumers  of electricity.  This  process  is  carried  out  through  a  single  control  center,  which  receives information  about  the  state  of  the  micro-grid  objects - the  level  of  electricity  generation  by generators  and  the  level of  the  current  load of  consumers.  Based  on  the results  of  information processing  in  the  control  center,  a  decision  is  made  on the  redistribution  of  power  between objects.  A  scheme  describing  the  dynamic  process  of  power  transfer  for  efficient  resource management  in  the  power  distribution  network  is  proposed.  CONCLUSION.  The  considered power management algorithm is a simple implementation of classical load balancing, and at the same time allows for optimal energy distribution within a given error. Optimal, in this case, will be the state of the system, in which all distributed renewable energy sources are used in full to meet the needs of the local micro-network, while reducing to a minimum the consumption from the  network.  At  the  same  time,  it  is  also  necessary  to  introduce  corrections  for  the  unevenness and instability of electricity generation by renewable energy sources.

About the Authors

L. M. Chetochnikova
South Ural State University. National Research University
Russian Federation

Chelyabinsk



N. I. Smolentsev
Siberian State University of Telecommunications and Information Sciences
Russian Federation

Novosibirsk



N. V. Tomskich
South Ural State University. National Research University
Russian Federation

Chelyabinsk



D. A. Gimgina
South Ural State University. National Research University
Russian Federation

Chelyabinsk



D. A. Lavrentieva
South Ural State University. National Research University
Russian Federation

Chelyabinsk



References

1. Kobets BB, Volkova I.O. Innovative development of the electric power industry based on the Smart Grid concept. - M.: IAC Energiya. - 2010.-- 208 p.

2. Khokhlov A., Melnikov Yu., Veselov F., Kholkin D., Datsko K. Distributed energy in Russia: development potential. - M.: Energy Center of the Moscow School of Management "Skolkovo", 2019. - 89 p.

3. Eroshenko S. A., Karpenko A. A., Kokin S. E., Pazderin A. V. Scientific problems of distributed generation // Izvestiya vuzov: Problems of power engineering, 2010. No. 11–12. S. 126-133.

4. Khokhlov A. Development of distributed generation will lead to dramatic changes in the architecture of the power industry in Russia. Energy and industry of Russia. 2017, no. 11

5. "Roadmap" "ENERGINET" of the National Technology Initiative. https://minenergo.gov.ru/node/8916 (date of circulation 03/12/2021).

6. Tyagunov MG, Vikulov AN Renewable energy in distributed power systems. Moscow Power Engineering Institute (NRU) SOK №7. 2018 - Access mode: https://www.c-o-k.ru/articles/vozobnovlyaemaya-energetika-v-raspredelennyh-energosistemah (date of treatment 02/08/2021).

7. Digital transition in the electric power industry of Russia: expert and analytical report. / under total. ed. V.N. Knyaginin and D.V. Kholkina. M., CSR, 2017.

8. Khovalova T.V., Zholnerchik S.S. Effects of introducing smart power grids. Strategic decisions and risk management. 2018, (2): S. 92-101.

9. Integration of Distributed Energy Resources in Power Systems: Implementation, Operation, and Control. / Edited by Toshihisa Funabashi. - Elsevier Inc., 2016.-- 313 p.

10. Planning for the Renewable Future: Long-term modeling and tools to expand variable renewable power in emerging economies, International Renewable Energy Agency, Abu Dhabi. 2017.

11. Kubarkov Yu. P., Chivenkov AI, Vikhorev NN, Shalukho A. V, Lipuzhin IA Method of regulating the current of the power line in the load node. Samara State Technical University Bulletin. Series: technical sciences. 2019. No. 1 (61). S. 128-138

12. Smolentsev N.I., Kondrin S.A. Superconducting electrokinetic energy storage device for local electrical networks // News of higher educational institutions. Energy problems. 2017, Vol. 19, No. 3-4. S.53-60.

13. Chetoshnikova L.M., Smolentsev N.I., Chetoshnikov S.A., Degtyarev D.V. Control system in the local low voltage electrical network. Polzunovsky Bulletin, N1, 2015, pp. 105-107.

14. R. Akella, F. Meng, D. Ditch, B. McMillin, M. Crow. Distributed Power Balancing for the FREEDM System. 2010 First IEEE International Conference on Smart Grid Communication, 594 p.

15. Arakelov, V. E. Methodical issues of energy saving / V. E. Arakelov, A. I. Kremer. - M.: Energoatomizdat, 1990.-- 192 p.


Review

For citations:


Chetochnikova L.M., Smolentsev N.I., Tomskich N.V., Gimgina D.A., Lavrentieva D.A. Local power flow control. Power engineering: research, equipment, technology. 2023;25(5):74-82. (In Russ.) https://doi.org/10.30724/1998-9903-2023-25-5-74-82

Views: 177


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)