Preview

Power engineering: research, equipment, technology

Advanced search

Vapor compression air conditioning system with solar heat collector

https://doi.org/10.30724/1998-9903-2023-25-5-101-114

Abstract

THE RELEVANCE of the study lies in the fact that air conditioning systems in Iraq consume more than half of the electricity generation. During the summer, when temperatures rise,  the  demand  for  air  conditioning  increases,  resulting  in  constant  power  outages. Consumers  are  starting  to  use  local  generation -  diesel  generators,  which  increase environmental pollution. THE PURPOSE. Consider the problems thermal energy from the sun is  an  ideal  solution  for  reducing  electricity  consumption,  increasing  the  performance  of  air conditioners,  ensuring  continuity  of  power  supply  and  reducing  pollution  from  diesel generators and power plants, as well as saving energy and reducing the consumption of fossil fuels.  METHODS.  When  solving  the  problem,  a  comparison  of  options  for  standard  and (hybrid  using  solar  thermal  energy)  air  conditioning  systems  was  used.  In  a  hybrid  system, thermal energy enters the system from a solar collector built behind the compressor. Thermal parameters  and  level  of  electricity  consumption  were  calculated.  RESULTS.  The  article showed that a hybrid air conditioning system using solar thermal energy is more efficient than a  traditional  system,  as  it  increases  the  cooling  coefficient  by  (38.9 - 46.3%)  and  reduces electricity  consumption  by  (56.89 -  66.66).  %).  CONCLUSION.  The  use  of  a  hybrid  air conditioning system in the climate of Baghdad city with a vapor compression air conditioning system  reduced  the  electrical  energy  consumption  of  the  compressor  and  increased  the performance  of  the  system,  which  will  lead  to  increased  reliability  of  power  supply  and eliminate the need to use local diesel generators.

About the Authors

A. K. Al-Okbi
University of Technology; Kazan State Power Engineering University
Iraq

Baghdad

Kazan



Yu. V. Vankov
Kazan State Power Engineering University
Russian Federation

Kazan



References

1. A. R. Trott, and T. Welch, “Refrigeration and air conditioning,” Butterworth-Heinemann, Third edition, 2000.

2. Y. V. Vankov, A. K. Al–Okbi, and M. H. Hasanen, "Solar hybrid air conditioning system to use in Iraq to save energy," In E3S Web of Conferences, vol. 124, p. 01024, EDP Sciences, 2019.

3. Kumar MA, Patel D. Performance assessment and thermodynamic analysis of a hybrid solar air conditioning system. Materials Today: Proceedings. 2021 Jan 1;46:5632-8.

4. Kurniawan Y, Berkah FT, SU MT. Development of hot water storage in hybrid-solar thermal air conditioning system. InJournal of Physics: Conference Series 2020 Apr 1 (Vol. 1511, No. 1, p. 012123). IOP Publishing.

5. https://www.unep.org/explore-topics/climate-action/what-we-do/climate-action-note/state-of-climate.html

6. https://www.statista.com/statistics/1302597/iraq-emissions-intensity-from-electricity-generation/

7. Munaaim, M. Arkam C., Karam M. Al-Obaidi, and M. Azizul Abd Rahim. "Performance Comparison of Solar Assisted and Inverter Air-Conditioning Systems in Malaysia." Journal of Design and Built Environment (2017): 53-61.

8. Al–Okbi A, Vankov Y, Kadhim H. Improving performance of direct expansion air conditioning systems while reducing electricity consumption through using hybrid energy. InE3S Web of Conferences 2021 (Vol. 289, p. 01014). EDP Sciences.

9. Abdelgaied M, Kabeel AE, Zakaria Y. Performance improvement of desiccant air conditioner coupled with humidification-dehumidification desalination unit using solar reheating of regeneration air. Energy Conversion and Management. 2019 Oct 15;198:111808.

10. Al–Okbi A, Vankov Y, Hussain HM. A hybrid air conditioning system using solar energy to save electrical energy with improving performance. InE3S Web of Conferences 2021 (Vol. 288, p. 01066). EDP Sciences.

11. Huang L, Zheng R, Piontek U. Installation and operation of a solar cooling and heating system incorporated with air-source heat pumps. Energies. 2019 Mar 14;12(6):996.

12. Xu, S. M., X. D. Huang, and R. Du. "An investigation of the solar powered absorption refrigeration system with advanced energy storage technology." Solar energy 85, no. 9 (2011): 1794-1804.

13. Bilgili, Mehmet. "Hourly simulation and performance of solar electric-vapor compression refrigeration system." Solar Energy 85, no. 11 (2011): 2720-2731.

14. Nwasuka, Nnamdi Cyprian, Nduka Nwankwojike, and Uchechukwu Nwaiwu. "Performance Evaluation of a Solar Hybrid Air-Conditioner." (2021).

15. Preisler, Anita, and Markus Brychta. "High potential of full year operation with solar driven desiccant evaporative cooling systems." Energy Procedia 30 (2012): 668-675.

16. Bouraba, Abdenour, Mohamed Saighi, Hind Saidani-Scott, and Abderrahmane Hamidat. "Cooling mechanism of a solar assisted air conditioner: An investigation based on pressure–enthalpy chart." international journal of refrigeration 80 (2017): 274-291.

17. Assadi, M. Khalaji, S. I. Gilani, and TC Jun Yen. "DESIGN a solar hybrid air conditioning compressor system." In MATEC Web of Conferences, vol. 38, p. 02001. EDP Sciences, 2016.

18. https://hitachi-compressors.com/highly-h-series-ASH184TV-rotary-compressors.php


Review

For citations:


Al-Okbi A.K., Vankov Yu.V. Vapor compression air conditioning system with solar heat collector. Power engineering: research, equipment, technology. 2023;25(5):101-114. (In Russ.) https://doi.org/10.30724/1998-9903-2023-25-5-101-114

Views: 153


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)