Preview

Power engineering: research, equipment, technology

Advanced search

Thermal calculation of the radiation chamber of a hydrocarbon pyrolysis furnace with a non-symmetric arrangement wall-mounted burners

https://doi.org/10.30724/1998-9903-2023-25-5-126-140

Abstract

RELEVANCE. The possibility of predicting the operating conditions of individual elements of high-temperature  technological  units  of  petrochemical  industries  even  at  the  design  or  modernization stage  is  relevant  for  many  reasons.  THE  PURPOSE.  Carrying  out  numerical  studies  of  thermal parameters and features of the turbulent movement of flue gases in the radiative part of the hydrocarbon pyrolysis furnace with a central arrangement of coils with an asymmetric arrangement of burners of low thermal  power  on  the  side  lined  walls  and  on the  vault of  the  chamber. Such  furnaces  are  used  to produce  lower  olefins,  which  are  the  primary  products  for  the  production of  synthetic  resins, rubbers,  plastics  and  fibers.  METHODS.  In  the  radiant  chamber  of  the  furnace,  interrelated processes  of  combustion  of  gaseous  fuel,  turbulent  flow  of  combustion  products,  radiant-convective heat exchange and cracking reactions of hydrocarbons in tubular coils occur with the  formation  of  a  mixture  of  light  hydrocarbons rich  in  olefins. The  formation  of  pyrolysis products of hydrocarbons becomes essential when the temperature of the vapor-gas mixture in tubular reactors is within 800-855  oC in the presence of dilution steam.. The heat required for this  will  be  obtained mainly  due  to  the  thermal  radiation  of  the  combustion  products  and  the hot  lined  surfaces  of  the  radiation  chamber.  The  physical  processes  taking  place  in  the combustion  chamber  are  modeled  by  two-dimensional  equations  of  the  model  gorenje hydrocarbons in the air, energy transfer by radiation and equations of motion. The package of applied programs is used, which is based on the numerical solution of the mentioned system of transfer equations. As a result of numerical studies, the velocity and temperature fields of flue gases  formed  during  the  combustion  of  a  fuel  gas  mixture  in  the  furnace  chamber  of  a  tube furnace  were  constructed.  In his  work,  it  is  assumed  that  on  one  side  wall  of  the  radiation chamber, wall burners in the amount of 64 pieces are placed in eight horizontal rows, and on the  other  wall  of  the  chamber,  the  same  burners  are  installed  in  seven  tiers  and  one  row  of burners  on  the  vault of  the  chamber.  The  combustion products  emanating  from  these burners form  complex  velocity  and  temperature  fields  in  the  volume  in  both  halves  of  the  radiation chamber. RESULTS.  As  a  result  of  numerical  calculations,  the  fields  of  temperature  and  flue gas velocities in both parts of the radiation chamber are constructed. The temperatures of the inner  surfaces  of  the  lining  walls  are  calculated.  The  distributions  of  the  surface  densities  of radiant  heat  fluxes  to  the  reaction  pipes  along  the  height  of  the  pyrolysis  furnace  of  the propane-butane  fraction  are  determined.  Comparisons  of  some  of  the  results  obtained  were carried out for cases when all burners are installed only on the side walls of the chamber and with  the  above  arrangement  of  burners. CONCLUSION.  Calculations  show  that  the  use  of  a large  number  of  low-power  wall  burners  leads  to  the  emergence  of  complex  velocity  and temperature fields in the radiation chambers of tubular furnaces. At the same time, the spread of temperature values in the volume of the furnace chamber is much smaller than for the case when  all  burners  of  higher  power  are  installed  only  on the  vault  and  on  the  hearth  of  the furnace. By changing the location of the tiers of burners, it is possible to achieve a relatively uniform supply of heat to the heated product along the length of the pyro coil.

About the Authors

D. B. Vafin
Kazan State Power Engineering University
Russian Federation

Kazan



Y. V. Vankov
Kazan State Power Engineering University
Russian Federation

Kazan



References

1. Danil Vafin. Complex heat transfer / Radiation heat transfer in power plants. – Saarbrucken, Deutshland: LAP LAMBERT Academic Publishing,. ISBN: 978-3-8433-1124-3, 2011. – 250 с.

2. Ermolaeva V.A., Semochkina K.Yu. Calculation of technological characteristics of a tube furnace // International Journal of Humanities and Naturral Sciences . 2021. v.10-1. - P. 220-222.

3. Vafin D.B. Thermal Regime of the Radiative Chamber of the Butane-Propane Pyrolysis Furnace // AIP Conference Proceedings_V 2402 (15/11/21).

4. Vafin D.B. Thermal and aerodynamic parameters of the radiation chamber of the hydrocarbon pyrolysis furnace // News of universities: Energy problems.– 2022, - vol. 24, no. 3, pp. 198-210.

5. Khujaev P. Radiative heate transfer in the furnace with variable volume // Bulletin of Science and Practice. 2018. v. 4. N 11. – P. 248-253.

6. Pavlov M.V., Karpov D.F., Sinitsyn A.A., Gudkov A.G. Winter greenhouse combined heating system // Magazine of Civil Engenering. 2020. 95(3). – P. 131-139.

7. Vetkin A.V., Suris A.L. Investigation of thermal engineering and environmental characteristics of the process of combustion of gaseous fuels// Thermal power engineering. - 2015, No. 3, P. 62 - 66.

8. Filla M. Prediction of the radiative heat transfer in pyrolysis furnace by exact and approximate methods//Riv. Combust. -1980. -v.34, N9-12. – P. 373-382.

9. Kuleshov O.Yu., Muslimov E.I. Sedelkin V.M. Mathematical modeling of zonal and local resulting heat transfer in shielded furnaces // Dynamics of systems, mechanisms and machines. - 2017. v. 5. No. 2. - P. 78-83.

10. Bloch A.G., Zhuravlev Yu.A., Ryzhkov L.N. Heat transfer by radiation: a handbook. - M.: Energoatomizdat, 1991. - 432 p..

11. Abdullin A.M., Vafin D.B. Numerical simulation of local heat transfer in furnaces of tube chambers using the differential approximations for radiative heat transfer//Journal of Engineering Physics. 1991. v.60. N2.- P. 237-242.

12. Tencer, J.T. Error Analysis for Radiation Transport / Dissertation doctor of Philosophy. The University of Texas at Austin, 2013. – 142 p.

13. Vafin D.B., Sadykov A.V., Butyakov M.A. Comparative characteristics of tube furnaces with injection and acoustic burners // News of universities: Energy problems - 2015. - No. 1-2, P.68 - 75.

14. Vafin. D.B., Butyakov M.A. Three-dimensional modeling of the operation of acoustic burners in tube furnaces // News of universities: Energy problems.– 2016. - No. 9 - 10, P.48 - 55.

15. Sadykov A.V., Butakov M.A. To the solution of the radiation transfer equation by the method of discrete ordinates // News of universities: Energy problems.– 2017. – v.19, No 5 – 6. P.25 - 534

16. Dekterev A.A., Gavrilov A.A., Kharlamov E.B., Litvintsev K.Yu. Using the -Flow program for numerical research of technological objects // Computational Technologies. 2003. vol.8. Part 1. p. 250.

17. Askarova A.S., Bolegenova S.A. Maximov V.Y., Computational method for investigation of solid fuel combustion in combustion chambers of a heat power plant // High Temperature. 2015. v. 53. N5. P. 751-757.

18. Xiangcum Qi, Mo Yang, Yuwen Zhang. Numerical analysis of NOx production under the air staged combustion. Frontiers in Heat and Mass Transfer (FHMT), 8, 3 (2017). DOI: 10.5098/hmt.8.3.

19. Oyewola O.M., Ismail O.S., Bosomo J.O. Numerical simulations of the turbulence in the thermal-radiation flow field. Frontiers in Heat and Mass Transfer (FHMT), 8, (2022). DOI: 10.5098/hmt.17.8.

20. Sebastian E., Georg L., Kai S., Gabor J., Dominique T. Optimal tube bundle arrangements in side-fired methane steam reforming furnaces. Frontiers in Energy Research. 2020. v. 8. Article 583346.

21. Miroslav R., Andreii K., Marcel F. and others. Mathematical model of a heating furnace implemented with volumetric fuel combustion. Processes 2020, 8, 469; doi: 10.3390/pr8040469.

22. Solov'ev S.A., Solov'eva O.V., Akhmetova I.G., Vankov Yu.V., Shakurova R.Z. Numerical study of thermal conductivity of composite thermal insulation material with microgranules // News of universities. Energy problems. – 2022. – vol. 24, No. 1. P. 86-98.

23. Khairutdinov I.R. On the issue of optimizing the pyrolysis process of hydrocarbon raw materials and the effective use of the resulting products // Butlerovskie messages. - 2009. – vol.17, No. 6. – pp. 53-59.

24. Vafin D.B., A.V. Sadykov A.V. Thermal calculation of the radiation chamber of an ethane pyrolysis furnace. JOP Conf. Series: Materialls and Engireering 862 062008 (2020).

25. Litventsev I Pyrolysis // The Chemical Journal, 2006.- v.5. P. 42-46.

26. Afanasiev S.V., Ismaylov O.Z., Pyrkin A.V. et.al. Structural heterogeneity of reaction pipes from austenitic hightemperature alloys // IOP Conf. Series: Materials Science and Engineering 537 (2019) 022049. IOP Publishing doi:10.1088/1757-899X/537/2/022049.

27. Dolganov I.M., Dunaev A. A. Mathematical modeling of pyrolysis of propane-butane fraction taking into account coke accumulation// Neftegaz.RU. – 2020. –No 3. – P. 17-20.

28. Fiveland W.A. Discrete-ordinate solutions of the radiative transport equation for rectangular enclosures // Trans.ASME: J. Heat Transfer. 1984. v.106, N4. P. 699-706.

29. Vafin D.B., Butakov M.A. Three-dimensional field of temperature and velocity in furnaces of tubular furnaces with acoustic burners // Bulletin of the Tupolev KSTU. – 2017. -No. 2. - P. 49-55.


Review

For citations:


Vafin D.B., Vankov Y.V. Thermal calculation of the radiation chamber of a hydrocarbon pyrolysis furnace with a non-symmetric arrangement wall-mounted burners. Power engineering: research, equipment, technology. 2023;25(5):126-140. (In Russ.) https://doi.org/10.30724/1998-9903-2023-25-5-126-140

Views: 222


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)