Preview

Power engineering: research, equipment, technology

Advanced search

Application of virtual synchronous generator technology in power systems and its modeling in the Matlab software package

https://doi.org/10.30724/1998-9903-2024-26-2-55-67

Abstract

Currently, the commissioning of power plants based on renewable energy sources (RES) using inverters is becoming widespread. However, these power plants do not participate in maintaining the stability of the power system during emergency disturbances, since they are switched off by technological protections when a disturbance occurs. In the future, when power plants based on renewable energy sources become widespread, ensuring the possibility of their participation in maintaining sustainability will significantly increase the reliability of the energy system. A preliminary assessment of the effectiveness of participation in maintaining sustainability should be carried out through computer modeling.
THE PURPOSE: To realize the possibility of participation of RES-based power plants in ensuring reliable and sustainable operation of the power system, as well as to realize the possibility of performing a preliminary assessment of the effectiveness of the proposed method.
METHODS. In this paper, the application of virtual synchronous generator technology is proposed to realize the possibility of participation of RES-based power plants in ensuring the reliability and sustainability of the power system. Also, a method of modeling the virtual synchronous generator in Matlab software package is proposed.
RESULTS. The technology of virtual synchronous generator is proposed, which with the use of inverter, electric energy storage and appropriate control system can provide the increase of dynamic stability of power system. A method of modeling the virtual synchronous generator in Matlab software package is proposed. The results obtained allow us to conclude that the constructed model of a virtual synchronous generator is efficient, maintains the stability of the system and ensures correct control of the inverter, as a result of which the parameters of the electrical network are maintained within acceptable limits. The resulting computer model can be used in further research.
CONCLUSION. The technology of virtual synchronous generator allows to imitate in the inverter the inertial and damping characteristics of the traditional synchronous generator, and the proposed computer model will help to evaluate the effectiveness of this technology when implemented in the power system.

About the Authors

R. R. Sattarov
Ufa State Petroleum Technological University
Russian Federation

Robert R. Sattarov

Ufa



R. R. Garafutdinov
Ufa University of Science and Technology
Russian Federation

Rustam R. Garafutdinov

Ufa



References

1. Sattarov R.R., Garafutdinov R.R. Tekhnologiya virtual'nogo sinhronnnogo generatora dlya povysheniya ustojchivosti energosistem. Aktual'nye problemy elektroenergetiki. 2021. – 435 s (In Russ).

2. Sheryazov S.K., Issenov S.S., Iskakov R.M., et al. The main types of wind turbines-generators in the power supply system. Power engineering: research, equipment, technology. 2021;23(5):24-33. (In Russ.) doi:10.30724/1998-9903-2021-23-5-24-33.

3. Cheema K.M. A comprehensive review of virtual synchronous generator // International Journal of Electrical Power & Energy Systems, 120, 2020. doi:10.1016/j.ijepes.2020.106006.

4. Chen M., Zhou D., Blaabjerg F. Modelling, implementation, and assessment of virtual synchronous generator in power systems. Journal of Modern Power Systems and Clean Energy.2020;8(3):399-411. doi:10.35833/MPCE.2019.000592.

5. Sakimoto K., Miura Y., Ise T. Stabilization of a power system with a distributed generator by a Virtual Synchronous Generator function. 8th International Conference on Power Electronics - ECCE Asia, 2011; 1498-1505, doi: 10.1109/ICPE.2011.5944492.

6. Zacarinnaya Yu.N., Reutin G.V., Kurilov S.S., et al. Prediction of electricity generation from res by machine learning methods. Power engineering: research, equipment, technology. 2023;25(3):81-92. (In Russ). doi:10.30724/1998-9903-2023-25-3-81-92.

7. Burmeister M. V., Bulatov R. V., Blinova K. A. Primenenie sistem virtual'noi inertsii dlya uluchsheniya kachestva perekhodnykh protsessov v elektroenergeticheskikh sistemakh. Fedorovskie chteniya — 2021 : LI mezhdunarodnaya nauchno-prakticheskaya konferentsiya s elementami nauchnoi shkoly, Moskva, 17–19 Nov 2021. – Moscow: MEI Publ., 2021. – pp. 318-324. (In Russ.).

8. Askarov A.B., Suvorov A.A., Andreev A.S, Gusev M.V. To the Question of Modern Principles of Renewable Energy Sources Control Based on a Virtual Synchronous Generator. Bulletin of Perm National Research Polytechnic University. Electrotechnics, Informational Technologies, Control Sys`s. 2022;41:5-30. (In Russ.). doi:10.15593/2224-9397/2022.1.01.

9. Mallemaci V., Mandrile F., Rubino S. et al. A comprehensive comparison of Virtual Synchronous Generators with focus on virtual inertia and frequency regulation. Electric Power Systems Research. 2021;201:107516. doi:10.1016/j.epsr.2021.107516.

10. Sang W., Guo W., Dai S., et al. Virtual synchronous generator, a comprehensive overview. Energies. 2022;15(17). pp. 6148.

11. Kong, X., Pan, J., Gong, X., et al. Emulating the features of conventional generator with virtual synchronous generator technology: an overview. The Journal of Engineering, 2017;(13):2135–2139. doi:10.1049/joe.2017.0707.

12. Sardalov R.B., Elmurzaev A.A., Debiev M.V., et al. Prospects for the development of traditional and unconventional energy in the Chechen Republic. Power engineering: research, equipment, technology. 2021;23(4):134-144. (In Russ.) doi:10.30724/1998-9903-2021-23-4-134-144.

13. Hirase Y., Ohara Y., Bevrani H. Virtual synchronous generator-based frequency control in interconnected microgrids. Energy Reports. 2020;(6):97-103. doi:10.1016/j.egyr.2020.10.044.

14. Lin C., Xiao L., Sattarov R. Power System Control of More-electric Aircraft Engine Based on Double Closed Loop Feedback. 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS), 2019; pp. 1-6, doi: 10.1109/ICOECS46375.2019.8950008.

15. Robert F., Roger C. Review of the Impacts of Distributed Generation on Distribution Protection. 2015 IEEE Rural Electric Power Conference (REPC). 2015. pp. 69-74. doi:10.1109/REPC.2015.12.

16. Lukutin B.V., Karrar Hameed K. Optimization of energy balances of a photovoltaic power plant with electrochemical and thermal storage of solar energy. Power engineering: research, equipment, technology. 2022;24(2):3-13. (In Russ.) doi:10.30724/1998-9903-2022-24-2-3-13.

17. Sattarov R.R., Garafutdinov R.R. Modeling Advanced Automatic Overcurrent Limiting System. Bulletin of the South Ural State University. Ser. Power Engineering, 2020; 20(1): 30–37. (in Russ.) doi:10.14529/power200104.

18. Sattarov R., Fedosov E., Garafutdinov R. et al., Application of PSCAD in Practical Studies of Electrical Power Engineering Student // 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS), 2019; 1-6, doi: 10.1109/ICOECS46375.2019.8950001.

19. Bulatov Yu.N., Kryukov A.V., Suslov K.V. The study of the isolated power supply system operation with controlled distributed generation plants, energy storage units and drive load. Power engineering: research, equipment, technology. 2021;23(5):184-194. (In Russ.) doi:10.30724/1998-9903-2021-23-5-184-194.

20. Burmejster M.V., Bulatov R.V., Kochergin A.V., et al. Primenenie virtual'noj sinhronnoj mashiny dlya integracii vozobnovlyaemyh istochnikov energii v ob"edinyonnye energosistemy. Nauchnoe soobshchestvo studentov: mezhdisciplinarnye issledovaniya: sb. st. po mat. LXXIV mezhdunar. stud. nauch.-prakt. Konf.№ 15(74) (In Russ).

21. Kolpakov A.I. Kondensatory Electronicon dlya vysokovol'tnyh preobrazovatel'nyh ustrojstv. Komponenty i tekhnologii, 2004; 6: 22-25 (In Russ).

22. Abuagreb M., Allehyani M. F., Johnson B. K. Overview of Virtual Synchronous Generators: Existing Projects, Challenges, and Future Trends. Electronics. 2022;11(18):2843. doi: 10.3390/electronics11182843.

23. Zhong Q-C, Weiss G. Synchronverters: Inverters that mimic synchronous generators // IEEE Trans Industry Electron. 2010. 58(4):1259 - 1267. doi: 10.1109/TIE.2010.2048839.

24. Lou G.,Yang Q., Gu W., et al. An improved control strategy of virtual synchronous generator under symmetrical grid voltage sag. International Journal of Electrical Power & Energy Systems.2020. 121(8):106093. doi: 10.1016/j.ijepes.2020.106093.

25. Li L., Li H., Tseng M. et al. Renewable energy system on frequency stability control strategy using virtual synchronous generator. Symmetry. 2020;12(10):1697. doi:10.3390/sym12101697.

26. Chen J., Liu M., Milano F. Adaptive virtual synchronous generator considering converter and storage capacity limits. CSEE Journal of Power and Energy Systems.2022.8(2). pp. 580-590.

27. Nikolaev Y.E., Osipov V.N., Ignatov V.Y. Calculation methodology of the energy indicators of an self-contained energy complex including gas turbine plants, wind-driven power plant and electric storage cell. Power engineering: research, equipment, technology. 2020;22(3):36-43. (In Russ.) doi:10.30724/1998-9903-2020-22-3-36-43.

28. Cvetkovic I., Boroyevich D., Burgos R. et al. Modeling of a virtual synchronous machine-based grid-interface converter for renewable energy systems integration. 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL).2014. doi:10.1109/compel.2014.6877195.

29. Alsiraji H., El-Shatshat R. Comprehensive assessment of virtual synchronous machine-based voltage source converter controllers. IET Generation, Transmission and Distribution. 2017;11(7):1762-1769. doi:10.1049/iet-gtd.2016.1423.

30. Badreldien M. M., Johnson B. K. Virtual Synchronous Generator Controller for Solar Photovoltaic System. 2021 IEEE Electrical Power and Energy Conference. 2021. pp. 480-485.

31. Fang H., Yu Z. Improved virtual synchronous generator control for frequency regulation with a coordinated self-adaptive method. CSEE Journal of Power and Energy Systems.2020.

32. Serebryannikov, A. V., Bogomolova S. A. Principy postroeniya invertorov v solnechnyh elektrostanciyah dlya sbrosa elektricheskoj energii v set'. Nanostrukturirovannye materialy i preobrazovatel'nye ustrojstva dlya solnechnyh elementov 3-go pokoleniya: Sbornik materialov I Vserossijskoj nauchnoj konferencii, Cheboksary, 2013. pp. 100-107. (In Russ.).


Review

For citations:


Sattarov R.R., Garafutdinov R.R. Application of virtual synchronous generator technology in power systems and its modeling in the Matlab software package. Power engineering: research, equipment, technology. 2024;26(2):55-67. (In Russ.) https://doi.org/10.30724/1998-9903-2024-26-2-55-67

Views: 309


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)