On the question of determining the location of a short circuit on a power transmission line
https://doi.org/10.30724/1998-9903-2024-26-2-97-104
Abstract
An algorithm for eliminating aperiodic components from short circuit (SC) currents is proposed. The algorithm is implemented by computer technology and allows you to determine the location of a short circuit and phase loss in 0.5 - 0.6 milliseconds. During such a time interval, saturation of the magnetic circuits of current transformers (CTs) does not occur, and the processors receive undistorted information from the CTs. To implement the algorithm, four measurements of instantaneous current values, separated by equal time intervals (sampling intervals), are sufficient. Elimination of aperiodic components increases the accuracy of determining the location of the fault. The algorithm can be used to determine the location of phase failure, and in digital relay protection based on measuring currents and voltages.
Keywords
About the Authors
N. S. BuryaninaRussian Federation
Nadejda S. Buryanina
Yakutsk
E. V. Lesnykh
Russian Federation
Elena V. Lesnykh
Novosibirsk
A. S. Lesnykh
Russian Federation
Aleksey S. Lesnykh
Novosibirsk
K. V. Suslov
Russian Federation
Konstantin V. Suslov
Irkutsk;
Moscow
M. L. Artemyeva
Russian Federation
Maya L. Artemyeva
Anadyr
References
1. Evans F.J., Wells G. Use of Sampling to Detect Transient Saturation in Protective Current Transformers. IEEE Transaction on Instrumentation and Measurement. 1970;19(3):144-3. doi: 10.1109/TIM.1970.4313884
2. Haeg H., Forster M. Elektronischer Sammelschienenschutz. Brown Boveri Mitteilungen. 1965;53(5, Pt 4):326-13.
3. Iamandi A., et al. Distance Protection Scheme for a Digital Substation. 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR); 2020; Cluj-Napoca, Romania. 2020. pp. 1-6. doi: 10.1109/AQTR49680.2020.9129913.
4. Li L., Fan H. and Yu J. Data sharing and distribution security protection strategy for the electric power industry. In 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE); 2021; Changsha, China. 2021. pp. 96-101. doi: 10.1109/AEMCSE51986.2021.00027
5. Ninghui H., Haibin X., et al. Sequence Coordination of Power Network Protection Based on Fault Current Limiting Equipment Action. In 2020 International Conference on Urban Engineering and Management Science (ICUEMS); 2020; Zhuhai, China. 2020. pp. 278-282. doi: 10.1109/ICUEMS50872.2020.00067
6. Shunxin L., et al., Power mechanism and strategy of digital transformation in power grid industry - Take State Grid Jibei Electric Power Company Limited as an example. In 2020 International Conference on Computer Science and Management Technology (ICCSMT); 2020; Shanghai, China. 2020 pp. 340-345. doi: 10.1109/ICCSMT51754.2020.00077
7. Bulychev A.V., Vasilev D.S., Kozlov V.N., et al. Relay protection in distribution networks 110/35/10 kV in the conditions of digital transformation of electric power systems. Releynaya zashita i avtomatizaciya. 2019; 34(1):71-77. (In Russ).
8. Burjanina N.S., Vasil'eva K.P., Koroljuk J.F., Lesnykh E.V., Suslov K.V. DEFINITION OF THE PLACE OF SHORT CIRCUITS ON POWER LINES OF 110 KV AND ABOVE ON INSTANTANEOUS VALUES OF CURRENTS AND VOLTAGES. Power engineering: research, equipment, technology. 2017;19(3-4):107-118. (In Russ.) https://doi.org/10.30724/1998-9903-2017-19-3-4-107-118
9. Buryanina NS, Korolyuk YuF, Lesnykh EV. Sposob opredeleniya mgnovennykh znacheniy parametrov (tokov i napryazheniy) pryamoy i obratnoy posledovatelnostey. Patent RUS №2016137597. 03.21.2018. Byul. №09. Available at: https://elibrary.ru/item.asp?id=41033283. (In Russ).
10. Konovalova, E.V. O rabote differentsialno-faznykh zashchit v ENES. Releynaya zashita i avtomatizaciya. 2013; 02:21. (In Russ).
11. Kuzhekov S.L., Nudelman G.S. Obespecheniye pravilnoy raboty mikroprotsessornykh ustroystv differentsialnoy zashchity pri nasyshchenii transformatorov toka. Izvestiya VUZov «Elektromekhanika». 2009; 4:12-19. (In Russ).
12. Kulikov, A. L., Kolesnikov A.A. Method of improvement for differential relay. Bibliotechnaya elektrotekhnika. 2021; 266(2):1-96. (In Russ).
13. Loskutov A. B., Kulikov A. L., Ilyushin P. V. From the GOELRO plan to digitalization of russia's electric power complex. Electrichestvo. 2020; 12:14-30. (In Russ). doi: 10.24160/0013-5380
14. Rumiantsev Yu.V., Romaniuk F.A., Rumiantsev V.Yu., Novash I.V. DIGITAL FILTERS IMPLEMENTATION IN MICROPROCESSOR-BASED RELAY PROTECTION. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2016;59(5):397-417. (In Russ.) https://doi.org/10.21122/1029-7448-2016-59-5-397-417
15. Tsarev, N.V., Pinchukov P.S. Klassifikatsiya tsifrovykh ustroystv releynoy zashchity i avtomatiki // Nauchno-tekhnicheskoye i ekonomicheskoye sotrudnichestvo stran ATR v XXI veke. 2019; 1:49-54. (In Russ).
Review
For citations:
Buryanina N.S., Lesnykh E.V., Lesnykh A.S., Suslov K.V., Artemyeva M.L. On the question of determining the location of a short circuit on a power transmission line. Power engineering: research, equipment, technology. 2024;26(2):97-104. (In Russ.) https://doi.org/10.30724/1998-9903-2024-26-2-97-104