Using a fuzzy logic-based apparatus for damping vibrations of a flexible load
https://doi.org/10.30724/1998-9903-2024-26-3-33-49
Abstract
THE RELEVANCE of the research lies in the need to improve existing control systems for industrial mechanisms with minimal investment in reconstruction, as well as the demand for reliable control systems, the use of which can increase the service life of the device as a whole.
THE PURPOSE. To develop a simple and at the same time effective control system for an industrial facility that allows damping vibrations of a flexible load. On overhead cranes, one of the mechanisms for moving cargo around the workshop is the trolley mechanism. The overhead crane trolley is used to move cargo along the bridge span, and the transported cargo can have either a rigid or flexible suspension. The use of a flexible suspension leads to vibrations in the form of rocking of the moved load. These vibrations are a negative phenomenon that has a negative impact on the mechanical structure of the crane and on the electrical control system of the electric drive of the trolley. An asynchronous motor with a squirrel-cage rotor is installed on the mechanism under consideration; based on the research carried out, a vector system was selected to control it, into which, in order to suppress load fluctuations, it was proposed to introduce a controller operating on the basis of fuzzy logic. The proposed fuzzy controller adjusts the engine speed depending on the angle of deflection of the flexible load; its uniqueness lies in its ease of implementation and the minimum number of control signals. Regulators of this type have proven themselves well, as they have high speed, good response in dynamics, and allow optimization of the control system by indirectly determining parameters.
METHODS. During the study, mathematical modeling techniques were used to solve the identified problems. The study of the control system was carried out in the MATLAB modeling environment in the Simulink subsystem.
RESULTS. The article reflects the significance of the research topic and discusses the available methods for damping vibrations of a flexible load. For the study, a system was developed containing a subsystem whose functions include tracking the dynamics of the movement of the cart and cargo. This article proposes a control controller operating on the basis of fuzzy logic rules. The controller is simple to implement, has one control signal, while fuzzy logic allows you to flexibly configure the control system, which makes it possible to obtain the required control characteristics.
CONCLUSION. Simulation of the trolley operation process in the MATLAB Simulink environment took place with a change in the mass of the load and the length of the suspension; the analysis of all modeling options led to the conclusion that the proposed controller based on fuzzy logic makes it possible to dampen load fluctuations for various initial parameters.
About the Authors
A. V. SinyukovRussian Federation
Alexey V. Sinyukov
Lipetsk
E. Yu. Abdullazyanov
Russian Federation
Edvard Yu. Abdullazyanov
Kazan
T. V. Sinyukova
Russian Federation
Nikolay N. Zaruckiy
Lipetsk
N. N. Zaruckiy
Russian Federation
Tatyana V. Sinyukova
Lipetsk
E. I. Gracheva
Russian Federation
Elena I. Gracheva
Kazan
References
1. Sinyukova T.V., Sinyukov A.V., Gracheva E.I, Kolcun M. Neural Network Technologies in Control Systems of Cargo Movement Mechanisms. Izvestiya vysshikh uchebnykh zavedenii. PROBLEMY ENERGETIKI. 2022. 24(2). P. 107-118
2. Sinyukova T.V., Sentsov E.V., Sinyukov A.V.. Neural Network Speed Observers // 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA 2019. 2019. P. 320-324.
3. Meshcheryakov V., Sinyukova T., Sinyukov A., Vladimirov O.. Analysis of the effectiveness of using the block for limiting the vibrations of the load on the mechanism of movement of the bogie with various control systems // E3S Web of Conferences. Sustainable Energy Systems: Innovative Perspectives (SES-2020), SaintPetersburg, Russia, 2020, 220, 01059, October 29-30.
4. Klepikov V.B., Bieliaiev O.S. Neuroregulator with a Simplified Structure for Electric Drive with Frictional Load // 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek). 2022. 22186939.
5. Matic P.R., Blanusa B.D., Vukosavic S.N.. A novel direct torque and flux control algorithm for the induction motor drive // IEEE Electric machines and drive conference: proceedings of the International conference. 2003, Madison. Vol. 2. P. 965-970.
6. Tytiuk V.K., Baranovskaya M.L., Chorny O.P., Burdilnaya E.V., Kuznetsov V.V., Bogatyriov K.N. Online-Identificatin of Electromagnetic Parameters of dn Induction Motor // Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations. 2020. 63(5). P. 423-440.
7. Chorna O., Chornyi O., Tytiuk V. Identification of Changes in the Parameters of Induction Motors during Monitoring by Measuring the Induction of a Magnetic Field on the Stator Surface // Proceedings of the International Conference on Modern Electrical and Energy Systems, MEES 2019. 2020. P. 150-153.
8. Meshceryakov V.N, Sibirtsev D.S., Valtchev S., Gracheva E.I. Control System for a Frequency Synchronized Asynchronous Electric Drive // Izvestiya vysshikh uchebnykh zavedenii. PROBLEMY ENERGETIKI. 2021. 23(3). P. 116-126.
9. Fedyaeva G.A., Smorudova T.V., Kochevinov D.V., Konokhov D.V. Chastotno-tokovaya sistema releino-vektornogo upravleniya asinkhronnym elektroprivodom mekhanizma peredvizheniya mostovogo krana // Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta. 2015. № 4 (48). P. 91.
10. Romanova E.I., Zayarnyi S.L. Matematicheskie modeli kranovogo mekhanizma // Nauka, tekhnika, obrazovanie. 2019. №2 (24), P. 44-49.
11. Klimash V.S., Skolovskii M.A. Povyshenie energeticheskoi effektivnosti kompleksa pod"emnykh kranov // Elektrotekhnicheskie kompleksy i sistemy. 2020. № 1 (46). P. 34-40.
12. Antipov A.S. Krasnova S.A. Metody dempfirovaniya kolebanii gruza i robastnogo upravleniya khodovoi telezhkoi mostovogo krana s uchetom dinamiki elektroprivoda // Mekhatronika, avtomatizatsiya, upravlenie. 2023. 24(8). P. 412-420.
13. Shimkovich D.G. Dinamicheskie nagruzki pri kolebaniyakh gruza na kanate // Lesnoi vestnik. – 2012. № 4. P. 141-146.
14. Kabakov A.M., Orlov A.N. Puti umen'sheniya raskachivaniya gruza gruzopod"emnykh mashin // Vestnik SevGTU. Mekhanika, energetika, ekologiya. 2000. Vyp. 25. P. 141 -144.
15. Korytov M.S., Shcherbakov V.S., Shershneva E.O. Obosnovanie znachenii koeffitsientov regulyatorov gasheniya kolebanii gruza mostovogo krana // Vestnik SibADI. 2017. № 1(53). P. 12-19.
16. Meshcheryakov V.N., Kolmykov V.V., Migunov D.V. Realizatsiya ustroistva dempfirovaniya kolebanii gruza, peremeshchaemogo mostovymi kranami na baze chastotnogo preobrazovatelya SINAMICS S120 // Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika. 2016. № 3. P. 48-54.
17. Kruglov S.P., Aksamentov D.N. Adaptivnoe upravlenie mostovym kranom po skorosti peremeshcheniya telezhki // Doklady TUSUR. 2022. T. 25, № 1. P. 86-92.
18. Zhang, M., Ma, X., Rong, X., et al. Adaptive Tracking Control for Double-Pendulum Overhead Cranes Subject to Tracking Error Limitation, Parametric Uncertainties and External Disturbances // Mechanical Systems and Signal Processing. 2016. Vol. 76-77. P. 15-32.
19. Kruglov S. P., Aksamentov D. N.. Sposob adaptivnogo upravleniya mostovym kranom s pryamym otslezhivaniem peremeshcheniya gruza // Mekhatronika, avtomatizatsiya, upravlenie.– 2020, 21(12). P. 682-688.
20. Pet. RU 85890 U1 Rossiiskaya Federatsiya, MPK B66C 13/06. Ustroistvo dlya avtomaticheskogo gasheniya mayatnikovykh kolebanii gruza, peremeshchaemogo telezhkoi mostovogo krana, Shchedrinov A. V.; zayavitel': Shchedrinov A. V., Serikov S. A., Kolmykov V. V., Kovrizhkin A. A. – № 2009112243/22; zayavka ot 02.04.2009; opubl. 20.08.2009, Bul. № 23. 2 s.
21. Pet. RU 2744647 C1 Rossiiskaya Federatsiya, MPK B66C 13/18. Sposob adaptivnogo upravleniya mostovym kranom, Kruglov S.P., Kovyrshin S.V., Aksamentov D.N.; zayavitel': Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego professional'nogo obrazovaniya Irkutskii gosudarstvennyi universitet putei soobshcheniya (FGBOU VO IrGUPS). – № 2020124779; zayavka № 16.07.2020; opubl. 12.03.2021, Bul. № 8. 16 s.
Review
For citations:
Sinyukov A.V., Abdullazyanov E.Yu., Sinyukova T.V., Zaruckiy N.N., Gracheva E.I. Using a fuzzy logic-based apparatus for damping vibrations of a flexible load. Power engineering: research, equipment, technology. 2024;26(3):33-49. (In Russ.) https://doi.org/10.30724/1998-9903-2024-26-3-33-49