Methods for optimizing rotors of synchronous electric motors with permanent magnets
https://doi.org/10.30724/1998-9903-2024-26-3-50-65
Abstract
RELEVANCE of research is the most preferred method of efficient rotor synchronous motor with some magnets. Currently, synchronous electric motors with ethereal magnets are increasingly used in various fields. For each task, it is necessary to implement s synchronous electric motor with small magnets with desire (torque, emotional cooling and many others). In order to make the most efficient use of a synchronized motor with universal magnets, methods are applied. TARGET. The usual methods of standard design of a synchronous motor with original magnets are aimed at determining the optimal parapets to be applied by changing them at a given value using indicative algorithms. The application of this approach is limited by parameterization, which is determined by the experience of the designer and manufacturing constraints. At present, the development of technologies for the production of metals and magnets, it has become possible to manufacture metals and detect magnets of various geometric shapes. It is this use of the topological estimation method. At present, topological modernization of large-scale construction, the application of topological strategy in the design of synchronous electric motors with federal magnets is only now gaining rapid development.
METHODS. When solving the tasks set, a comparative analysis of various merged for comparative analysis of various methods for comparing the rotors of synchronous electrical motors with natural magnets was carried out.
RESULTS. The article describes the relevance of the topic under consideration. The most effective methods for optimizing the rotors of synchronous electrical motors with permanent magnets are determines. The conditions under which the application of one or another method oh optimizing the rotor is most effective are determined.
CONCLUSION. The article describes various method for optimizing the rotors of permanent magnet synchronous motors. The pros and cons of various optimization methods are described after studying various types of optimizations, it was concluded that the most effective optimization method is the topology optimization method for rotors of permanent magnets synchronous motors.
About the Authors
A. A. MaiorovRussian Federation
Andrei A. Maiorov
Kazan
A. R. Safin
Russian Federation
Al'fred R. Safin
Kazan
References
1. Bramerdorfer G., Tapia J.A., Pyrhonen J.J., Cavagnino A. Modern electrical machine desing optimization: Techniques trends, and best practices. IEE Transactions on Industrial Electronics. 2018;65(10): 7672-7684.
2. Deaton J.D., Grandhi R.V. A survey of structural and multidisciplinary continuum topology optimization: post 200. Structural and Multidisciplinary Optimization. 2014;49(1): 1-38.
3. Jian Z., Zhibin W., Haiqiang L. Modal Analysis and Structure Optimization of Permanent Magnet Synchronous Motor. IEE Transactions on Industrial Electronics. 2020;10: 1-11.
4. Le, Ngo Fyong. Geneticheskie algoritm dlya optimizatsii proektirovaniya sinkhronnogo dvigatelya s inkorporirovannymi magnitami. Sistemnyi analiz i prikladnaya informatika. 2017;1: 42-48. (In Russ).
5. Sigmund S., Maute K. Topology optimization approaches. Structural and Multidisciplinary Optimization. 2013;6: 1031-1055.
6. Escgenauer H.A., Olhoff N. Topology optimization of continuum structures: a review. Appl. Mech. Rev. 2001;4: 331-390.
7. Zargham S., Ward T.A., Ramil R., Bedruddin I.A. Topology optimization: review for structural designs under vibration problems. Structural and Multidisciplinary Optimization. 2016;6: 1157-1177.
8. Guo F., Brown I.P. Simultaneous magnetic and structural topology optimization of synchronous reluctance machine rotors. IEE Transaction on Magnetic. 2020;10: 1-12.
9. Petrov T.I. Topologicheskaya optimizatsiya parametrov sinkhronnykh ehlektricheskikh mashin s postoyannymi magnitami v sostave privodnykh kompleksov. Tinchurinskie chteniya. 2019: 241-244. (In Russ).
10. Garibaldi M., Gerada C., Ashcroft I., Hague R. Free-form design of electrical machine rotor cores for production using additive manufacturing. Journal of Mechanical Design. 2019;7: 200-213.
11. Sato T., Watanade K., Igarashi H. Multimaterial topology optimization of electrical machines based on normalized gaussian network. IEEE transactions on magnetics. 2015;3: 1-4.
12. Vavilov V.E., Ismagilov F.R., Zainagutdinova EH.I. Primenenie adventivnykh tekhnologii v proektirovanii i sozdanii ehlektricheskikh mashin. Problemy i perspektivy razvitiya dvigatelestroeniya; 23-25 iyunya 2021 g., Samara. s. 281-282. (In Russ).
13. Swensen J.P., Odhner L.U., Araki B. and Dollar A.M. Injected 3D-electrical traces in additive manufactured parts with low melting temperature metals. IEEE International Conference on Robotics and Automation (ICRA), 2015: 988-995.
14. Safin A.R., Ranjan Kumar Behera. Additivnoe proizvodstvo i optimizatsiya topologii magnitnykh materialov dlya ehlektricheskikh mashin . Izvestiya vysshikh uchebnykh zavedenii. PROBLEMY EHNERGETIKI. 2021. 23(3): 14-33. (In Russ). doi:10.30724/1998-9903-2021-23-3-14-33.
15. Lamichhane T.N., Sethuraman L., Dalagan A., Wang H., Keller J., Paranthaman M.P. Additive manufacturing of soft magnets for electrical machines – a review. Material Today Physics. 2020;15: 250-255.
16. Wrobel R., Mecrow B. A comprehensive review of additive manufacturing in construction of electrical machines. IEEE Transactions on Energy Conversion. 2020;35(2): 1054-1064.
17. Pham T., Kwon P., Foster S. Additive manufacturing ang topology optimization of magnetic materials for electical machines – a review. Energies. 2021;14(2): 283.
18. Li L., Tirado A., Nlebedim I., Rios O., Post B., Kunc V., Lowden R., Lara-Curzio E., Fredette R., Ormerod J., et al. Big area additive manufacturing of high performance bonded ndfeb magnets. Scientific reports. 2016;6(1): 1-7.
19. Volegov A., Andreev S., Selezneva N., Ryzhilhin I., Kudrecatykh N., Madler L., Okulov I. Additive manufacturing of heavy rare earth free high-coercivity permanent magnets. Acta Materialia. 2020;188: 733-739.
20. White H., Kassen A.G., Simsek E., Tang W., Ott R.T., Anderson I.E. Net shape processing of alnico magnets by additive manufacturing. IEEE Transactions on Magnetics. 2017;53(11): 1-6.
21. Korman O, Di Nardo M., Degano M., Gerada C. On the use of topology optimization for synchronous reluctance machines design. Energies. 2022;57(6): 3719.
22. Lolova I., Barta J., Bramerdorfer G., Silber S. Topology optimization of line-start synhromous reluctance machine. 2020 International Conference on Mechatronics-Mechatronika (ME). IEEE. 2020: 1-7.
23. Lee J., Seo J.H., Kikuchi N. Topology optimization of switched reluctance motors for the desired torque profile. Structural and multidisciplinary optimization. 2010;42(5): 783-796.
24. Okamoto Y., Hoshino R., Wakao S., Tsuburaya T. Improvement of torque characteristics for a synchronous reluctance motor using mm abased topology optimization method. IEE transactions on magnetics. 2017;54(3): 1-4.
25. Sato S., Sato T., Igarashi H. Topology optimization of synchronous reluctance motor using normalized gaussian network. IEE transactions on magnetics. 2015;51(3): 1-4.
26. Yamashita Y., Okamoto Y. Design optimization of synchronous reluctance motor for reducing iron loss and improving torque characteristic using topology optimization based on the level-set method. IEE Transactions on Magnetics. 2020;56(3): 1-4.
27. Otomo Y., Igarashi H. Topology optimization using gabor filter: Application to synchronous reluctance motor. IEEE Transactions on Magnetics. 2021;57(6): 1-4.
28. Watanabe K., Suga T., Kitabatake S. Topology optimization based on the on/off method for synchronous motor. IEEE Transactions on Magnetics. 2018;54(3): 1-4.
29. Xia L., Xia Q., Huang X., Xie Y.M. Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Archives of Computational Methods in Engineering. 2018;25(2): 437-478.
30. Huang X., Xie M.Y. A further review of eso type methods for topology optimization. Structural and Multidisciplinary Optimization. 2010;41(5): 671-683.
31. Querin O.M., Steven G.P., Xie Y.M. Evolutionary structural optimization (eso) using a bidirectional algorithm. Engineering computation. 1998;15(8): 1031-1048.
32. Guo F., Salameh S., Krishamurthy M., Brown I.P. Multimaterial magneto-structural topology optimization of wound field synchronous machine rotors. IEEE Transactions on Industry Applications. 2020;56(4): 3656-3667.
33. Ma B., Zheng J., Lei G., Zhu J., Jin J., Guo Y. Topology optimization of ferromagnetic components in electrical machines. IEEE Transactions on Energy Conversion. 2020;35(2): 786-789.
34. Bashin K.A., Torsunov R.A., Semenov S.V. Metody topologicheskoi optimizatsii konstruktsii, primenyayushchiesya v aehrokosmicheskoi otrasli. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Aehrokosmicheskaya tekhnika. 20 7. №5 . pp. 5 -61.
35. Sigmund O., Maute K. Struct topology optimization ap-proaches A comparative review. Structural and Multidisciplinary Optimization. 2013;48(6): 1031-1055.
36. Liu Z., Korvink J., Huang R. Structure topology optimization: fully coupled level set method via FEMLAB. Structural and Multidisciplinary Optimization. 2005;29(6): 407–417.
37. Shevtsova V.S., Shevtsova M.S. Sravnitel'nyi analiz metod optimizatsii toplogii (SIMP i Level Set) na primere rekonstruktsii kryla strekozy. Vestnik yuzhnogo nauchnogo tsentra. 2013;9(1): 8-16 (In Russ).
38. Kuci E., Jansen M., Coulaud O. Level set topology optimization of synchronous reluctance machines using a body-fitted mesh representation. Structural and Multidisciplinary Optimization. 2021: 1-17.
39. Ren X., Thabuis A., Belahcen A., Perriard Y. Topology optimization for coil of electric machine with level-set method. International Conference on Electrical Machines and Systems. 2019: 1-4.
40. Lee J., Wang S. Topological shape optimization of permanent magnet in voice coil motor using level set method. IEEE Transactions on Magnetics. 2012;48(2): 931-394.
41. Kim Y.S., Park I.H. Topology optimization of rotor in synchronous reluctance motor using level set method and shape design sensitivity. IEEE Transactions on Applied Superconductivity. 2010;20(3): 1093-1096.
42. Hidaka Y., Sato T., Igarashi H. Topology optimization method based on on-off method and level set approach. IEEE Transactions on magnetics. 2014;50(2): 617-620.
43. Otomo Y., Igarashi H., Hidaka Y., Komatsu T., Yamada M. 3-d topology optimization of claw-pole alternator using gaussian-basis function with global and local searches. IEEE Transactions on Magnetics. 2019;56(1): 1-4.
44. Tiismus H., Kallaste A., Vaimann T., Rassolkin A. State of her art of additively manufactured electromagnetic materials for topology optimized electrical, machines. Additive Manufacturing. 2022: 102778.
45. Khan A., Midha C., Lowther D. Reinforcement learning for topology optimization of a synchronous reluctance motor. IEEE Transactions on Magnetics. 2022;58(9): 1-4.
46. Sasaki H., Hidaka Y., Igarashi H. Explainable deep neural network for design of electrical motors. IEEE Transactions on Magnetics. 2021;57(6): 1-4.
47. Asanuma J., Doi S., Igarashi H. Transfer learning through deep learning: Application to topology optimization of electrical motor. IEEE Transactions on Magnetics. 2020;56(3): 1-4.
48. Doi S., Sasaki H., Igarashi H. Multi-objective topology optimization of rotation machines using deep learning. IEEE Transactions on Magnetics. 2019;55(6): 1-5.
49. Deng C., Wang Y., Qin C., Fu Y., Lu W. Self-directed online machine learning for topology optimization. Nature communications. 2022;13(1): 1-14.
50. Petrov T.I. Nazvanie dissertatsii: Metody kompleksnoi topologicheskoi optimizatsii rotora sinkhronnogo ehlektricheskogo dvigatelya s postoyannymi magnitami. Kazan; 2021. Available at: https://kgeu.ru/Document/GetDissDoc/4495d7e9-e9d7-45d7-8178-a31c0e9e1d57. Accessed; 05.02.2023. (In Russ).
51. Hiruma S., Ohtani M., Soma S., Kubota Y., Igarashi H. Novel hybridization of parameter and topology optimizations: Application to permanent magnet motor. IEEE Transactions on Magnetics. 2021;57(7): 1-4.
52. Credo A., Fabri G., Villani M., Popescu M. Adopting the topology optimization in the design of high-speed synchronous reluctance motors for electric vehicles. IEEE Transactions on Industry Applications. 2020;56(5): 5429-5438.
53. Sitnikov M.A., Galunin S.A., Belakhsen Anuar Optimizatsiya topologii rotora vysokosortnoi sinkhronnoi reaktivnoi mashiny. Razvivaya energeticheskuyu povestku budushchego; 10-11 dekabrya 2021 g., Saknt-Peterburg. s. 142-146. (In Russ).
54. Petrov T.I. Modification of the genetic algorithm for complex topological optimization of the rotor of synchronous motors. Izvestia of higher educational institutions. Energy problems. 2021;23(3):70-79. (In Russ).
55. Petrov T., Safin A. Modification of the synchronous motor model for topological optimization. E3S Web of Conferences, Prague. 2020;01016.
Review
For citations:
Maiorov A.A., Safin A.R. Methods for optimizing rotors of synchronous electric motors with permanent magnets. Power engineering: research, equipment, technology. 2024;26(3):50-65. (In Russ.) https://doi.org/10.30724/1998-9903-2024-26-3-50-65