Using a simulator of Minigrid modes to solve design problems
https://doi.org/10.30724/1998-9903-2024-26-3-66-82
Abstract
RELEVANCE: The main directions of modern energy development include the use of distributed small-scale generation and various facilities based on them with integration into existing distribution electric networks of centralized power supply, as well as the digitalization of such facilities and technologies for their design, personnel training.
THE PURPOSE: The possibility and effectiveness of using the Minigrid mode and control simulator (a simulator for learning mode management and training operational personnel) as a means of solving a number of design tasks when creating small-scale generation facilities and integrating them into centralized power supply networks to obtain integral indicators of its effectiveness is being investigated.
METHODS: Simulation modeling of normal and emergency modes of «Minigrid» is used on an annual time interval using a digital simulator developed at NSTU. The modes are set by daily load graphs, disturbances by stochastic characteristics. The operational, emergency and operational control of the network circuit and generation is modeled, taking into account the possibilities of autonomous and parallel operation of the Minigrid with an external power system, followed by the calculation of integrated indicators of the technical efficiency of design solutions for generating equipment options and mode control methods.
RESULTS: Using the example of a typical Minigrid, various design tasks are considered, in solving which, according to uniform efficiency indicators, it is possible to evaluate and select the preferred configuration of the local power supply system. In particular, the dependences of the annual undersupply of electricity and the utilization factor of the installed generating capacity of the power plant on the number and capacity of its power units, the operating modes of the Minigrid at a given daily load schedule are obtained. The possibility of expanding the scope of the digital simulator of «Minigrid» modes is demonstrated.
CONCLUSION: The results obtained indicate the effectiveness of using the simulator to solve a number of design tasks when creating a Minigrid. The developed digital simulator of «Minigrid» modes, in addition to learning how to manage modes, can be used as a unified tool for analysis and decision-making at the stage of design alternatives.
About the Authors
V. A. OzhulasRussian Federation
Vladis A. Ozhulas
Novosibirsk
A. V. Petrishhev
Russian Federation
Alexey V. Petrishhev
Novosibirsk
A. G. Fishov
Russian Federation
Alexander G. Fishov
Novosibirsk
References
1. Ilyushin P.V. Sistemnyi podkhod k razvitiyu i vnedreniyu raspredelennoi energetiki i vozobnovlyaemykh istochnikov energii v Rossii // Energetik. 2022. № 4. S. 20-26.
2. Klagge B., Brocke T. Decentralized electricity generation from renewable sources as a chance for local economic development: a qualitative study of two pioneer regions in Germany //Energy, Sustainability and Society. – 2012. – Т. 2. – С. 1-9.
3. Tsai C. T. et al. Optimal design and performance analysis of solar power microsystem for mini-grid application //Microsystem Technologies. – 2021. – Т. 27. – С. 1267-1281.
4. Sultana G., Keshavan B. K. Evaluation of performance and reliability indices of a micro-grid with distributed generation //2020 IEEE region 10 conference (TENCON). – IEEE, 2020. – С. 341-346.
5. Chambon C. L. et al. Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India //Renewable Energy. – 2020. – Т. 154. – С. 432-444.
6. Saneev B. G. i dr. Avtonomnye energoistochniki na severe Dal'nego Vostoka: kharakteristika i napravleniya diversifikatsii //Prostranstvennaya ekonomika. – 2018. – №. 1. – S. 101-116.
7. Mondal A. H., Denich M. Hybrid systems for decentralized power generation in Bangladesh //Energy for sustainable development. – 2010. – Т. 14. – №. 1. – С. 48-55.
8. Byk F. L., Ilyushin P. V., Myshkina L. S. Osobennosti i perspektivy razvitiya raspredelennoi energetiki v Rossii //Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika. – 2021. – T. 64. – №. 6. – S. 78-87.
9. Byk F. L., Ilyushin P. V., Myshkina L. S. Prognoz i kontseptsiya perekhoda k raspredelennoi energetike v Rossii //Problemy prognozirovaniya. – 2022. – №. 4 (193). – S. 124-135.
10. Byk F. L., Myshkina L. S., Kozhevnikov M. V. Povyshenie ustoichivosti energosnabzheniya regionov na osnove lokal'nykh intellektual'nykh energosistem //Ekonomika regiona. – 2023. – T. 19. – №. 1. – S. 163-177.
11. Byk F. L., Myshkina L. S. Integratsiya lokal'nykh intellektual'nykh energosistem i energeticheskii perekhod //Metodicheskie voprosy issledovaniya nadezhnosti bol'shikh sistem energetiki. – 2022. – S. 31-40.
12. Boiko E. E. i dr. Sposoby povysheniya effektivnosti territorial'nykh sistem energosnabzheniya //Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika. – 2022. – T. 65. – №. 4. – S. 108-117.
13. Byk F. L., Myshkina L. S. Tsifrovye tekhnologii i effektivnost' lokal'nykh energosistem //Metodicheskie voprosy issledovaniya nadezhnosti bol'shikh sistem energetiki. – 2021. – S. 99-107.
14. Fishov A. G. i dr. Sinkhronizatsiya Microgrid s vneshnei elektricheskoi set'yu i mezhdu soboi v normal'nykh i posleavariinykh rezhimakh pri raznykh skhemakh ob"edineniya //Releinaya zashchita i avtomatizatsiya. – 2021. – №. 2. – S. 32-42.
15. Fishov A. G. i dr. Rezhimy i avtomatika Minigrid, rabotayushchikh v sostave raspredelitel'nykh elektricheskikh setei EES //Releinaya zashchita i avtomatizatsiya. – 2021. – №. 3. – S. 22-37.
16. Gulomzoda A. Kh. Issledovanie sposoba sinkhronizatsii s vneshnei set'yu lokal'nykh sistem elektrosnabzheniya na baze maloi generatsii //Metodicheskie voprosy issledovaniya nadezhnosti bol'shikh sistem energetiki. – 2021. – S. 303-312.
17. Fishov A. G., Petrishchev A. V., Ozhulas V. A. Tsifrovoi simulyator rezhimov minigrida, integrirovannogo s vneshnei elektricheskoi set'yu. Chast' 1. Fiziko-tekhnologicheskie osnovy ob"ekta simulyatsii // Energetik. – 2023. – № 6. – S. 6–13.
18. Fishov A. G., Petrishchev A. V., Ozhulas V. A. Tsifrovoi simulyator rezhimov minigrida, integrirovannogo s vneshnei elektricheskoi set'yu. Chast' 2. Tekhnicheskaya realizatsiya i osobennosti ispol'zovaniya simulyatora //Energetik. – 2023. – №. 7. – S. 14-22.
19. Müller S. C. et al. Interfacing power system and ICT simulators: Challenges, state-of-the-art, and case studies //IEEE Transactions on Smart Grid. – 2016. – Т. 9. – №. 1. – С. 14-24.
20. Palensky P. et al. Applied cosimulation of intelligent power systems: Implementing hybrid simulators for complex power systems //IEEE Industrial Electronics Magazine. – 2017. – Т. 11. – №. 2. – С. 6-21.
21. Sidwall K., Forsyth P. A review of recent best practices in the development of real-time power system simulators from a simulator manufacturer’s perspective //Energies. – 2022. – Т. 15. – №. 3. – С. 1111.
22. Byk F.L., Myshkina L.S. Effekty integratsii lokal'nykh intellektual'nykh energosistem // Izvestiya vysshikh uchebnykh zavedenii. PROBLEMY ENERGETIKI. 2022. T. 24. № 1. S. 3-15.
23. Kolotygina E. K., Frolova Ya. A. Optimizatsiya sostava i zagruzki vklyuchennogo oborudovaniya pri sovmestnoi vyrabotke elektrichestva i tepla v energosistemakh maloi moshchnosti //Elektroenergetika glazami molodezhi-2018. – 2018. – S. 89-92.
24. Chukreev Yu.Ya., Byk F.L., Myshkina L.S., Chukreev M.Yu. Cvoistva nadezhnosti pri detsentralizatsii energetiki. Izvestiya Rossiiskoi akademii nauk. Energetika. 2023. № 5. S. 19-39.
25. Byk F. L., Chukreev Yu. Ya. Otsenka vliyaniya integratsii lokal'nykh intellektual'nykh energosistem na sredstva obespecheniya balansovoi nadezhnosti EES //Metodicheskie voprosy issledovaniya nadezhnosti bol'shikh sistem energetiki. – 2022. – S. 41-50.
26. Byk F. L., Myshkina L. S. Nadezhnost' ob"ektov raspredelennoi energetiki //Nadezhnost' i bezopasnost' energetiki. – 2021. – T. 14. – №. 1. – S. 45-51.
27. Abdmouleh Z. et al. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources //Renewable Energy. – 2017. – Т. 113. – С. 266-280.
28. Xu Y. et al. Smart energy systems: A critical review on design and operation optimization //Sustainable Cities and Society. – 2020. – Т. 62.– С. 102369.
29. Rech S. Smart energy systems: Guidelines for modelling and optimizing a fleet of units of different configurations //Energies. – 2019. – Т. 12. – №. 7. – С. 1320.
Review
For citations:
Ozhulas V.A., Petrishhev A.V., Fishov A.G. Using a simulator of Minigrid modes to solve design problems. Power engineering: research, equipment, technology. 2024;26(3):66-82. (In Russ.) https://doi.org/10.30724/1998-9903-2024-26-3-66-82