Preview

Power engineering: research, equipment, technology

Advanced search

Methodology for assessing the technical condition of electrical networks based on determining the probability of their failure

https://doi.org/10.30724/1998-9903-2024-26-5-31-43

Abstract

RELEVANCE. The current technical condition of electrical networks at the moment is generally unsatisfactory with an average level of physical wear of about 60-70 %, therefore,the development of fundamentally new methods for assessing their technical condition is currently an urgent task. The methods of assessing the technical condition of electrical networks analyzed in the article are based to a greater extent on the subjective and insufficiently accurate method of expert assessments, which actually does not take into account the data of its technical diagnostics, as well as statistics of defects and failures. OBJECT. To develop a methodology for assessing the technical condition of electrical networks, which would be based on probabilistic models characterizing the physical processes occurring in electrical networks, as well as data from their technical diagnostics, statistics of defects and failures. METHODS. To assess the technical condition of electrical networks, a probabilistic assessment method was used. In this case, the methodology involves sequential determination of the probabilities of occurrence of selected groups of emergency modes, the probability of failure of a network element as a whole, as well as the probability of failure of an object and a group of objects of the power grid. RESULTS. Based on the research results, probabilistic models of failure of electrical networks were obtained, which, unlike the assessment methods discussed in the article, are based on data from technical diagnostics and inspections of electrical equipment. An example of the implementation of the developed methodology on real electrical network objects is given. CONCLUSION. The developed methodology allows for a more reasonable prioritization of technical impacts on electrical grid equipment, which will make it possible to replace or repair equipment that has actually exhausted its physical resource, which will reduce the frequency of emergency conditions and reduce damage from power supply interruptions.

About the Authors

D. A. Boyarkov
Altai State Technical University named after I.I. Polzunov
Russian Federation

Dmitrij A. Boyarkov 

Barnaul



B. S. Kompaneets
Altai State Technical University named after I.I. Polzunov
Russian Federation

Boris S. Kompaneets

Barnaul



References

1. Jashhenko AV. Organizacija postavok jelektrojenergii i moshhnosti: opyt i praktika reform otdel'nogo regiona. Menedzhment i biznes-administrirovanie. 2021; 3:92-103. (In Russ). dio: 10.33983/2075-1826-2021-3-92-103.

2. Veselov FV, Soljanik AI. Uslovija razvitija jelektrojenergetiki Rossii v ramkah zhestkih cenovyh ogranichenij v srednesrochnoj perspective. Problemy prognozirovanija. 2020; 1(178):88-98. (In Russ).

3. Voropaj NI, Stennikov VA, Barahtenko EA. Integrirovannye jenergeticheskie sistemy: vyzovy, tendencii, ideologija. Problemy prognozirovanija. 2017; 5(164):39-49. (In Russ).

4. Jashhenko AV, Kazymov IM, Kompaneec BS. Jekonomiko-finansovaja ocenka celesoobraznosti provedenija meroprijatij po predotvrashheniju avarijnyh situacij v jelektrojenergetike. Finansovyj biznes. 2022; 2(224):165-159. (In Russ).

5. Naumov IV, Podjachih SV, Polkovskaja MN et al. Ocenka urovnja nadezhnosti funkcionirovanija filialov PAO Rosseti Rossii. Nadezhnost'. 2024; 24(2):38-51. (In Russ).

6. PAO «Rosseti Sibir'»: oficial'nyj sajt kompanii. Godovoj otchet za 2023 god. Available at: https://www.rosseti-sib.ru/about/dokumenty-about/godovye-otchety/. Accessed: 25 Jun 2024. (In Russ).

7. Bojarkov DA, Jashhenko AV. Algoritm risk-orientirovannogo upravlenija tehnicheskim sostojaniem jelektricheskih setej. Avtomatizacija v promyshlennosti. 2022; 1:56-60. (In Russ). dio: 10.25728/avtprom.2022.01.12.

8. Golubev PV. Bez obnovlenija seti dal'she sushhestvovat' ne mogut. Engergoexpert. 2021; 1(24):12-16. (In Russ).

9. Grabchak EP, Loginov EL, Romanova JuA. Problemy zameny iznoshennogo oborudovanija v jelektrojenergetike Rossii: prioritety modernizacii v kontekste obespechenija nadezhnosti i bezopasnosti.Problemy bezopasnosti i chrezvychajnyh situacij. 2019; 5:38-43. (In Russ). dio: 10.36535/0869-4176-2019-05-5.

10. Popov GV, Ignat'ev EB, Vinogradova LV, et al. Jekspertnaja sistema ocenki sostojanija jelektrooborudovanija «Diagnostika+». Jelektricheskie stancii. 2011; 5:35-45. (In Russ).

11. Hal'jasmaa AI, Dmitriev SA, Kokin SE. Automated decision-making system to assess the actual condition of electrical equipment. Sbornik trudov V mezhdunarodnaja molodjozhnaja nauchno- tehnicheskaja konferencija “Jelektrojenergetika glazami molodezhi”. 2014. pp. 187-193. (In Russ.).

12. Majorov AV, L'vov JuN. Metodologija prinjatija reshenij pri ocenke tehnicheskogo sostojanija silovyh transformatorov i avtotransformatorov jelektricheskih setej s uchjotom faktora riska povrezhdenija. Jelektricheskie stancii. 2019; 9:14-20. (In Russ.).

13. Birjulin VI, Kudelina DV, Gorlov AN. Primenenie sistemy nechetkogo vyvoda dlja ocenki sostojanija izoljacii kabel'nyh linij. Vestnik Kazanskogo gosudarstvennogo jenergeticheskogo universiteta. 2021; 1(49):191-203. (In Russ.).

14. Smekalov VV, Nazarov IA, Merzljakov AS, Romanov KK, et al. Avtomatizirovannaja sistema kontrolja tehnicheskogo sostojanija osnovnogo oborudovanija magistral'nyh jelektricheskih setej. JeNERGIJa. 2022; 1:32-41. (In Russ.).

15. Ivshin IV, Galjautdinova AR, Vladimirov OV, et al. Intellektual'naja sistema ocenki tehnicheskogo sostojanija transformatornoj podstancii 35/6 (10) kV. Proceedings of the higher educational institutions. ENERGY SECTOR PROBLEMS. 2022; 2:24-35. (In Russ.). dio: 10.30724/1998-9903-2022-24-2-24-35.

16. Levin VM, Guzhov NP, Chernenko NA, et al. Metodologija upravlenija remontami oborudovanija v jelektricheskih setjah neftepromyslov. Sistemy analiza i obrabotki dannyh. 2020; 2- 3(79):139-155. (In Russ.).

17. Bao Y, Wang Y, Huang G, et al. Impact of human error on electrical equipment preventive maintenance policy. In 2015 IEEE Power & Energy Society General Meeting, 2015. pp. 1-5.

18. Farzin N, Vakilian M, Hajipour E. Transformer practical turn-to-turn fault detection performance using negative sequence and space vector-based methods. In 2019 International Conference on Protection and Automation of Power System (IPAPS), 2019. pp. 1-6.

19. Dahiya R, Singh A. Review on Condition Monitoring and Maintenance of Electrical Equipment in Power Systems. International Journal of Electrical Power & Energy Systems. 2020; 119:105848.

20. Li P, Wang C, Jiang L. An Overview of Condition-Based Maintenance for Power Systems. Energies. 2022; 15(9):2430.

21. Da Silva A.ML, Cassula AM, Billinton R, Manso LAF. Integrated reliability evaluation of generation, transmission and distribution systems. IEE Proceedings: Generation, Transmission and Distribution, 2002. pp. 1-6.

22. Shpiganovich AN, Zatsepina VI, Shpiganovich AA, et al. Power-supply systems reliability control. EAI Endorsed Transactions on Energy, 2018. p.18(e10).

23. Emecheta SN, Nwajuonye RO, Okonkwo GC. Monitoring and Evaluation of The Reliability of Distribution Network with Distributed Generation. Journal of Engineering Research and Reports. 2021; 12:29-42.

24. Rivas AEL, Abrao T. Faults in smart grid systems: Monitoring, detection and classification. Electric Power Systems Research. 2020; p. 106602.

25. Leal A, Durán M, Botero JF. Reliability provision in software defined power substations communication networks. Computer Networks. 2020; p. 107560.

26. Ghiasi M, Ghadimi N, Ahmadinia E. An analytical methodology for reliability assessment and failure analysis in distributed power system. SN Applied Sciences, 2019; 1:44.

27. Grabchak EP. Ocenka tehnicheskogo sostojanija jenergeticheskogo oborudovanija v uslovijah cifrovoj jekonomiki. Nadezhnost' i bezopasnost' jenergetiki. 2017; 4(10):2-16.

28. Kalinin AF, Eremina TV. Model' prognozirovanija riska bezopasnosti i ocenki ostatochnogo resursa jelementov jelektroustanovki. Michurinskij agronomicheskij vestnik. 2018; 1:73-79. (In Russ).

29. Hlebcov AP, Zajnutdinova LH. Analiz sostojanija iznosa jelektrooborudovanija podstancij i metody diagnostirovanija avarijnyh rezhimov. Jenergo- i resursosberezhenie: promyshlennost' i transport.2019; 2(27):17-20. (In Russ).

30. Antonenko IN. Risk-orientirovannyj podhod k upravleniju proizvodstvennymi aktivami jenergetiki. Jenergojekspert. 2020; 1(73):26-33. (In Russ).

31. Soshnikov AA, Kompaneets BS. Kolichestvennye pokazateli v tehnologijah bezopasnosti. Polzunovskij vestnik. 2014; 4:119-123. (In Russ).

32. Kompaneets BS, Boyarkov DA. Electric grids technical evaluation method based on their failure probability. IOP Conference Series: Materials Science and Engineering: 4th International Scientific and Technical Conference on Energy Systems, ICES 2019, Belgorod, 2020. p. 012030. (In Russ).


Review

For citations:


Boyarkov D.A., Kompaneets B.S. Methodology for assessing the technical condition of electrical networks based on determining the probability of their failure. Power engineering: research, equipment, technology. 2024;26(5):31-43. (In Russ.) https://doi.org/10.30724/1998-9903-2024-26-5-31-43

Views: 358


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)