Development of an electric drive system of modular design for small vessels
https://doi.org/10.30724/1998-9903-2024-26-6-69-80
Abstract
RELEVANCE. The transition to an electric mode of transport is becoming more and more relevant due to the development of technologies in the field of electric motors and energy storage devices. One of the tasks set for specialists in the field of electric transport today is the transition of water transport from internal combustion engines to a fully electric drive. This article provides a calculation of an electric drive system of a modular design for small vessels. THE PURPOSE. The goal is to develop an electric drive system for small vessels, which will allow the use of an electric motor and energy storage devices in water transport. METHODS. The design of the electric drive system is based on the model-based design method. RESULTS. As a result, a block diagram of the installation for a small vessel was obtained. CONCLUSION. The creation of electric drive systems of modular design is poorly developed in the domestic mechanical engineering due to the lack of a developed electric transport infrastructure; the creation of domestic developments in this area is of a strategic nature for industry and energy.
About the Authors
V. R. BasenkoRussian Federation
Vasily R. Basenko
Kazan
A. N. Tsvetkov
Russian Federation
Alexei N. Tsvetkov
Kazan
T. I. Petrov
Russian Federation
Timur I. Petrov
Kazan
A. R. Ibragimova
Russian Federation
Aigul R. Ibragimova
Kazan
R. N. Rahmaev
Russian Federation
Ruslan N. Rahmaev
Kazan
References
1. Alipour M., Esen E., Kizilel R. Investigation of 3-D multi-layer approach in predicting the thermal behavior of 20 Ah Li-ion cells // Applied Thermal Engineering. 2019. Vol. 153. P. 620–632. DOI: https://doi.org/ 10.1016/j.applthermaleng.2019.03.020.
2. Safin, A. R. Thermal model of a linear electric machine / A. R. Safin, I. V. Ivshin, T. I. Petrov // IOP Conference Series: Materials Science and Engineering: International Scientific Electric Power Conference 2019, ISEPC 2019, Saint Petersburg, May 23–24, 2019 year. Vol. 643. – Saint Petersburg: Institute of Physics Publishing, 2019. – P. 012014.
3. Tsvetkov A.N., Safin A.R., Ivshin I.V. [et al.] Adaptive control system of the pumping unit // International Journal of Engineering and Advanced Technology. – 2019. – Vol. 8, No. 5 Special Issue 3. – P. 289-291. – DOI 10.35940/ijeat.E1064.0785S319. – EDN NJDAWF.
4. Çeven, S. Implementation of hardware-in-the-loop based platform for real-time battery state of charge estimation on li-ion batteries of electric vehicles using multilayer perceptron / S. Çeven, R. Bayır // International Journal of Intelligent Systems and Applications in Engineering. – 2020. – Vol. 8, No. 4. – P. 195-205. – DOI 10.18201/ijisae.2020466313. – EDN CYXKTT.
5. Patil M. S., Seo J.-H., Panchal S., Jee S. [et al.]. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate // International Journal of Heat and Mass Transfer. 2020. Vol. 155. Article number: 119728. DOI: https://doi.org/10.1016/ j.ijheatmasstransfer.2020.119728.
6. Munoz P. M., Humana R. M., Falagüerra T., Corey G. Parameter optimization of an electrochemical and thermal model for a lithium-ion commercial battery // Journal of Energy Storage. 2020. Vol. 32. Article number: 101803. DAY: https://doi.org/10.1016/j.est.2020.101803
7. Safin A.R., Khusnutdinov R.R., Kopylov A.M. et al. Development of a method for topological optimization of electric machines based on a genetic algorithm // Bulletin of the Kazan State Energy University. – 2018. – № 4(40). – Pp. 77-85. – EDN WKEPUG.
8. Development of a layout for a mobile electric vehicle charging unit and a test stand / A. R. Safin, A. N. Tsvetkov, T. I. Petrov [et al.] // Natural and technical Sciences. – 2023. – № 7(182). – Pp. 138-145. – DOI 10.25633/ETN.2023.07.09. – EDN NZWEGG.
9. Khanchandani K.B., Power electronics / K.V. Khanchandani // ISBN: 978-0-07-058389-7 – pp. 908-959.
10. Gulyaev I.V. The operation of an asynchronized brushless motor with the consumption of purely a10. Gulyaev I.V. Vector control of a synchronous motor with permanent magnets / I.V. Gulyaev, A.V. Volkov, A.A. Popov, etc. // Scientific and technical Bulletin of the Volga region. - 2015. – No. 5. – pp. 187-191.
11. Gulyaev I.V. Operation of an asynchronous valve motor with consumption of purely active power from the armature/ Tutaev G.M., Yushkov I.S., Volkov A.V. // Actual problems of electronic instrumentation proceedings of the XII International conference: APEP-2014. 2014. pp. 241-244.
12. Wang L. Direct torque control for SDPM / L. Wang, Yu. Gao // Proceedings of IEEE International Electric Machines and Drives conference IEMDC. – 2007.– pp. 403-406.
13. Gulyaev I.V. Electric drive based on an asynchronous valve motor / I.V. Gulyaev, A.V. Volkov, A.A. Popov et al. // Scientific and Technical Bulletin of the Volga region. - 2015. – No. 1. – pp. 70-73.
14. Development of an algorithm for the operation of a control station for a mobile electric vehicle charge unit. / A. R. Safin, A. N. Tsvetkov, E. I. Gracheva, T. I. Petrov // Bulletin of the PITTU named after academician M.S. Osimi. – 2022. – No. 4(25). – P. 37-44. – EDN FLAYJK.
15. Petrov T.I., Safin A.R. Development and implementation of a stand to confirm the effectiveness of topological optimization of the rotor of synchronous motors with permanent magnets // Bulletin of the Kazan State Power Engineering University. - 2021. – Vol. 13, No. 2(50). – pp. 100-108. – EDN YRAJUO.
16. The development of technology of mobile charging stations for electric vehicles / A. R. Safin, I. V. Ivshin, A. N. Tsvetkov [et al.] // Izvestiya vysshikh uchebnykh zavedeniy. Energy problems. - 2021. – Vol. 23, No. 5. – pp. 100-114. – DOI 10.30724/1998-9903-2021-23-5-100-114. – EDN YIGCHH.
17. Modeling the operation of the equipment of a mobile charging installation for charging electric vehicles in order to confirm compliance with groups of climatic and mechanical design / T. I. Petrov, A. R. Safin, E. I. Gracheva [et al.] // Vestnik MGTU. Proceedings of the Murmansk State Technical University. - 2022. – Vol. 25, No. 4. – pp. 365- 377. – DOI 10.21443/1560-9278-2022-25-4-365-377. – EDN JILKEG.
18. Firago B. I., Vasil’ev D. S. (2016) Vector Systems Control of Electrical Drives. Minsk, Vysheishaya Shkola Publ. 159 (in Russian).
19. Safin, A. R. Optimization of a synchronous motor model with permanent magnets to reduce the calculation time of torque / A. R. Safin, T. I. Petrov // Bulletin of the PITTU na med after academician M.S. Osimi. – 2021. – № 3(20). – Pp. 31-37. – EDN TBKBRC.
20. Safin A.R., Petrov T.I., Kopylov A.M. et al. The method of designing and topological optimization of rotors of synchronous motors with permanent magnets // Bulletin of the Kazan State Power Engineering University. - 2020. – vol. 12, No. 2(46). – pp. 45-53. – EDN EUUONN.
21. Laser Control and Measuring Complex for Non-contact Vibration Control of the Power Transformer Technical Condition / V. Basenko, O. Vladimirov, I. Ivshin [et al.] // Lecture Notes in Civil Engineering. – 2022. – Vol. 190. – P. 157-167. – DOI 10.1007/978-3-030-86047-9_17. – EDN EIGGGZ.
22. 3D model of a power transformer for the study of its technical condition according to vibration parameters / V. R. Basenko, M. F. Nizamiev, I. V. Ivshin, O. V. Vladimirov // Izvestia of higher educational institutions. Energy problems. - 2022. – Vol. 24, No. 3. – pp. 130-143. – DOI 10.30724/1998-9903-2022-24-3-130-143. – EDN TTLTLL.
Review
For citations:
Basenko V.R., Tsvetkov A.N., Petrov T.I., Ibragimova A.R., Rahmaev R.N. Development of an electric drive system of modular design for small vessels. Power engineering: research, equipment, technology. 2024;26(6):69-80. (In Russ.) https://doi.org/10.30724/1998-9903-2024-26-6-69-80