Preview

Power engineering: research, equipment, technology

Advanced search

Calculation algorithm for a multilayer thermal insulation system of a thermal energy storage device with a high-temperature working fluid

https://doi.org/10.30724/1998-9903-2024-26-6-166-179

Abstract

RELEVANCE. Managing the surplus and deficit of electric power generation, which contributes to the stabilization of the energy system and enhances its reliability, is a pressing issue. One of the solutions is the development and implementation of thermal energy storage systems within distributed energy systems. An important task in their development is creating an effective insulation system. THE PURPOSE. To develop an algorithm for the effective design of insulation systems for thermal energy storages with high-temperature working bodies. METHODS. The research is carried out using theoretical methods, including thermal engineering calculation of thermal insulation layers and thermal conductivity analysis. Mathematical modeling methods were used to determine the thickness of the thermal insulation system of a thermal energy storage device. RESULTS. The design of a thermal energy storage device has been developed. Based on the developed algorithm, it was determined that the thickness of the thermal insulation system should be 151 mm (the thickness of the first thermal insulation circuit is 135 mm, the thickness of the second thermal insulation layer made of mineral wool is 16 mm), ensuring minimal heat loss at a temperature of the heat accumulator equal to 2000 °C. It was revealed that the radiant heat flux prevails in the layers closest to graphite, accounting for about 70% of the total flux. CONCLUSION. The study confirmed the effectiveness of the proposed multi-layer insulation system for thermal energy storage. The developed algorithm allows for the calculation of insulation systems of thermal energy storage, taking into account various parameters and operating conditions.

About the Authors

A. N. Chadaev
Kazan National Research Technological University
Russian Federation

 Aleksey N. Chadaev 

 Kazan 



A. V. Dmitriev
Kazan State Power Engineering University
Russian Federation

 Andrey V. Dmitriev 

 Kazan 



V. E. Zinurov
Kazan State Power Engineering University
Russian Federation

 Vadim E. Zinurov 

 Kazan 



A. M. Muginov
Kazan State Power Engineering University
Russian Federation

 Arslan M. Muginov  

 Kazan 



G. I. Pavlov
Kazan National Research Technical University
Russian Federation

 Grigory I. Pavlov 

 Kazan 



References

1. Pimm, A.J., Palczewski, J., Barbour, E.R. et. al. Using electricity storage to reduce greenhouse gas emissions. Applied Energy. 2021; 282:116199. doi: 10.1016/j.apenergy.2020.116199.

2. Alva G., Lin Y., Fang G. An overview of thermal energy storage systems. Energy. 2018;144:341- 378. doi: 10.1016/j.energy.2017.12.037

3. Zinurov V., Nikandrova M., Kharkov V. Assessment of thermal storage technologies in energy sector. 2020 Ural Smart Energy Conference. 2020. pp. 68-71. doi: 10.1109/USEC50097.2020.9281236

4. Baker J. New technology and possible advances in energy storage. Energy Policy. 2008;36(12):4368-4373. doi: 10.1016/j.enpol.2008.09.040.

5. Mahmoud, M., Ramadan, M., Olabi, A.G. et. al. A review of mechanical energy storage systems combined with wind and solar applications. Energy Conversion and Management. 2020;210:112670. doi: 10.1016/j.enconman.2020.112670.

6. Soloveichik G. L. Battery technologies for large-scale stationary energy storage. Annual review of chemical and biomolecular engineering. 2011;2:503-527. doi: 10.1146/annurev-chembioeng-061010-114116.

7. Morandi, A., Breschi, M., Ribani, P., et. al. Superconducting magnetic energy storage. Energy Storage for Power Systems. 2020. doi: 10.1049/pbpo063e_ch11.

8. Yuan K., Shi, J., Aftab, W., et. al. Engineering the thermal conductivity of functional phase‐change materials for heat energy conversion, storage, and utilization. Advanced Functional Materials. 2020;30(8):1904228. doi: 10.1002/adfm.201904228.

9. Han G. G. D., Li H., Grossman J. C. Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nature communications. 2017;8(1):1446. doi: 10.1038/s41467-017-01608- y.

10. Jamekhorshid A., Sadrameli S. M., Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews. 2014;31:531-542. doi: 10.1016/j.rser.2013.12.033.

11. Pielichowska K., Pielichowski K. Phase change materials for thermal energy storage. Progress in materials science. 2014;65:67-123. doi: 10.1016/J.PMATSCI.2014.03.005.

12. Acem Z., Lopez J., Del Barrio E. P. KNO3/NaNO3 – Graphite materials for thermal energy storage at high temperature: Part I.–Elaboration methods and thermal properties. Applied thermal engineering. 2010;30(13):1580-1585. doi: 10.1016/J.APPLTHERMALENG.2010.03.013.

13. Badenhorst H. A review of the application of carbon materials in solar thermal energy storage. Solar Energy. 2019;192:35-68. doi: 10.1016/J.SOLENER.2018.01.062.

14. Pacio J., Wetzel T. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Solar Energy. 2013;93:11-22. doi: 10.1016/J.SOLENER.2013.03.025.

15. Niedermeier, K., Mueller-Trefzer, F. Theoretical and experimental studies of dual-media thermal energy storage with liquid metal. In: Daubner, M., Marocco, L., Weisenburger, A. et. al. editors. AIP Conference Proceedings. Solarpaces 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems; 28 September – 2 October 2020; Freiburg, Germany. AIP Conf. Proc. 2022;2445(1): 160011.

16. Zhang, H., Baeyens, J., Cáceres, G. et. al. Thermal energy storage: Recent developments and practical aspects. Progress in Energy and Combustion Science. 2016;53:1-40. doi: 10.1016/j.pecs.2015.10.003. 17. Cuce, E., Cuce, P. M., Wood, C. J. et. al. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renewable and Sustainable Energy Reviews. 2014;34:273-299. doi: 10.1016/j.rser.2014.03.017.

17. Hu, P., Liu, L., Zhao, M. Design, synthesis, and use of high temperature resistant aerogels exceeding 800 ºC. ES Materials & Manufacturing. 2021;15:14-33. doi: 10.30919/esmm5f459.

18. Tychanicz-Kwiecień, M., Wilk, J., Gil, P. Review of high-temperature thermal insulation materials. Journal of Thermophysics and heat transfer. 2019;33(1):271-284. doi: 10.2514/1.T5420.

19. Soloveva O. V., Solovev S.A., Shakurova R.Z. Review of modern ceramic cellular materials and composites used in heat engineering. Power Eng. Res. equipment, Technol. 2023;25(1):82-104. (In Russ.) https://doi.org/10.30724/1998-9903-2023-25-1-82-104


Review

For citations:


Chadaev A.N., Dmitriev A.V., Zinurov V.E., Muginov A.M., Pavlov G.I. Calculation algorithm for a multilayer thermal insulation system of a thermal energy storage device with a high-temperature working fluid. Power engineering: research, equipment, technology. 2024;26(6):166-179. (In Russ.) https://doi.org/10.30724/1998-9903-2024-26-6-166-179

Views: 117


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)