Solar energy for power supply of remote consumers in the Arctic zone
https://doi.org/10.30724/1998-9903-2025-27-1-48-58
Abstract
RELEVANCE. The Arctic zone is becoming a subject of increasing interest due to climate change and the growing need for sustainable development. The introduction of renewable energy sources is becoming key to the sustainability and security of the region. The research aimed at solving the problems of development of the Arctic zone of Russia with a focus on overcoming transportation and energy constraints and introducing renewable energy sources is highly relevant.
THE PURPOSE. The study aims to develop and implement sustainable and efficient energy systems in the Arctic zone of Russia using renewable energy sources, with a focus on solar energy. To develop a simulation model of a solar array with a positioning system and demonstrate an approach to improve the efficiency of solar power plants, which is important for current technological research in renewable energy.
METHODS. Collection and analysis of measured data of solar radiation values and sunshine duration in different areas of Murmansk region. To evaluate the efficiency of solar panels application, a simulation model was developed in the program complex Matlab application Simulink.
RESULTS. The results of the study allowed to identify the potential of solar energy utilization in different areas of the Murmansk region. The performed calculations allowed to determine the optimal capacity of solar panels for the Khibiny mountain range, which contributes to the effective utilization of solar energy. A simulation model of a solar panel with the implementation of a battery positioning system to improve the efficiency of operation is presented.
CONCLUSION. The significant potential of solar energy utilization in the Arctic zone is achieved with the help of a positioning system, which holds promise for sustainable development of the region and improved energy efficiency. Adaptation of solar power plants to specific climatic conditions optimizes their performance and ensures sustainability even in the harsh climate of northern regions
About the Authors
I. E. KirillovRussian Federation
Ivan E. Kirillov
Murmansk
N. M. Kuznetsov
Russian Federation
Nikolay M. Kuznetsov
Apatity
N. I. Lazarev
Russian Federation
Nikita I. Lazarev
Apatity
I. N. Morozov
Russian Federation
Ivan N. Morozov
Apatity
Murmansk
References
1. Pakina, A. A. Prospects of green economy as a new paradigm of development / A. A. Pakina, V. A. Gorbanev // Bulletin of MGIMO University. - 2019. - Т. 12, № 5. - С. 134-155. - DOI 10.24833/2071-81602019-5-68-134-155. – EDN TFIKCT.
2. Lazhentsev, V. N. Arctic and the North in the context of Russia's spatial development / V. N. Lazhentsev // Regional Economics. - 2021. - Т. 17, № 3. - С. 737-754. – DOI 10.17059/ekon.reg.2021-3-2. – EDN PWHOPP.
3. Kuznetsov, N. M. Development of distributed energy in the Murmansk region / N. M. Kuznetsov, O. E. Konovalova // Fundamental Research. - 2021. - № 5. - С. 122-127. – DOI 10.17513/fr.43049. – EDN YCTFPG.
4. E Nalivaychenko et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 918 012238. DOI https://doi.org/10.1088/1757-899X/918/1/012238.
5. Gorodnov A.G. Construction of energy-efficient electrical complexes with an autonomous power supply system // News of higher educational institutions. ENERGY PROBLEMS. 2020. Vol. 22. No. 4. pp. 64-78. doi:10.30724/1998-9903-2020-22-4-64-78.
6. Tishkov S.V., Nalivaichenko E.V., Volkov A.D., Scherbak A.P., Karginova-Gubinova V.V., Pakhomova A.A. Increasing energy efficiency of the economy of the Arctic zone of the Russian Federation: problems, prospects, methods of assessment. Moscow: First Economic Publishing House, 2021. - 130 с. - ISBN 978-5-91292-358-6. – DOI 10.18334/9785912923586. - EDN IKKNOR.
7. M. Arun Noyal Doss, R. Naveenkumarb, R. Ravichandranc, J. Rengarajd, M. Manikandane. PV Fed Asymmetrical Switched Diode Multi Level Inverter With Minimum Number of Power Electronic Components. Energy Procedia, 2017, vol. 117, pp592-599. DOI: https://doi.org/10.1016/j.egypro.2017.05.155.
8. Denisov, K. S. Solution of the problem of complex power supply of an autonomous consumer in order to reduce economic costs / K. S. Denisov, V. I. Velkin, A. N. Tyrsin // Bulletin of SUSU. Series "Energetics". - 2019. - Т. 19, № 3. - С. 84-92. DOI 10.14529/power190309. – EDN EKYWXK.
9. Y. Liu, J. Liu, Y. Chen, D. Wang, Y. Li, Z. Liu, H. Tang, C. Song. Study of the thermal performance of a distributed solar heating system for residential buildings using a heat-user node model. Energy and Buildings, 2022, Vol. 254, p. 111569. DOI https://doi.org/10.1016/j.enbuild.2021.111569.
10. Moskalenko N.I. Numerical modeling of the effects of atmospheric meteorological conditions on the efficiency of operation of solar thermal and electric power plants / Akhmetshin A.R., Safiullina Ya.S., Dodov I.R., Khamidullina M.S.// Izvestia of Higher educational institutions. PROBLEMS OF ENERGY. 2021. Vol. 23. No. 5. PP. 86-99. doi:10.30724/1998-9903-2021-23-5-86-99
11. Said S.M., Salama H.S., Hartmann B., Vokony I.A robust SMES controller strategy for mitigating power and voltage fuctuations of grid connected hybrid PV-wind generation systems. Electrical Engineering. 2019. Vol. 101. Iss. 3. P. 1019-1032. DOI https://doi.org/10.1007/s00202-019-00848-z.
12. Mobile wind-solar power plants: state, prospects and design features / O.V. Grigorash, E.A. Denisenko, D.N. Grishchenko, P.M. Baryshev // Bulletin of SUSU. Series "Energetics". 2023. Т. 23, № 1. С. 48-55. – DOI 10.14529/power230105. – EDN: CRODXG.
13. Modi A., Bühler F., Andreasen J. G., Haglind F. A review of solar energy based heat and power generation systems. Renewable and Sustainable Energy Reviews. 2017. Vol. 67. P. 1041-1064. DOI https://doi.org/10.1016/j.rser.2016.09.075.
14. F. Reda, M. Viot, K. Sipila, M. Helm. Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country, Appl. Energy. 166 (2016) 27-43. – DOI 10.1016/j.apenergy.2015.12.119.
15. Assessment of solar power plants functioning in the climatic conditions of the North / N. P. Mestnikov, P. F. Vasiliev, N. S. Buryanina [et al.] // Grozny Natural Science Bulletin. 2022. Т. 7, № 2(28). С. 101-110. – DOI 10.25744/genb.2022.37.74.011. – EDN: OUPGYM.
16. Kuznetsov, N.M. Energy efficiency management in the regions of the Arctic zone of the Russian Federation: a monograph / N.M. Kuznetsov // Apatity: Publishing house of FIC KSC RAS. - 2020. - 92 p.: ill. ISBN 9785911374341. – DOI 10.37614/978.5.91137.434.1. EDN GVUSWV.
17. Konovalova, O. E. Renewable energy sources in the Murmansk region / O. E. Konovalova, N. M. Kuznetsov // Industrial Energy. - 2018. - № 9. - С. 51-56. – EDN YOGUDJ.
18. Use of renewable energy sources for power supply to consumers in the Arctic zone of the Russian Federation / O. S. Popel, S. V. Kiseleva, M. O. Morgunova [et al.] // Arctic: ecology and economy. - 2015. - № 1(17). - С. 64-69. – EDN TUUTMJ.
19. Minin, V. A. Prospects for the use of solar energy in the Murmansk region / V. A. Minin, T. I. Yakunina, I. L. Korobko // Problems of energy supply of the Murmansk region. - Apatity: Kola Scientific Center of RAS, 1992. - С. 73-81.
20. Apasova, E. G. Description of the data array of the total monthly duration of solar shining at the stations of Russia. Certificate of state registration of the database No. 2015621446 / E. G. Apasova, L. K. Kleshchenko [Electronic resource] http://meteo.ru/data/160-sunshine-duration#описание-массива-данных (accessed on 30.01.2024).
21. Kolosov, R. V. Modeling of solar batteries / R. V. Kolosov // Intellectual Electrical Engineering. 2019. № 2. С. 85-93. – DOI 10.46960/2658-6754_2019_2_85. – EDN JVVVED.
22. Mitrofanov S.V. Selection of the optimal angle of inclination of solar panels for their placement in an arbitrary region // Bulletin of SUSU. Series "Energy". 2023. Т. 23, № 1. С. 5-11. – DOI 10.14529/power230101. – EDN ZDAYFE.
Review
For citations:
Kirillov I.E., Kuznetsov N.M., Lazarev N.I., Morozov I.N. Solar energy for power supply of remote consumers in the Arctic zone. Power engineering: research, equipment, technology. 2025;27(1):48-58. (In Russ.) https://doi.org/10.30724/1998-9903-2025-27-1-48-58