Analysis of the influence of operating modes of a dry transformer on the condition of its insulation
https://doi.org/10.30724/1998-9903-2025-27-1-70-87
Abstract
RELEVANCE Numerical simulation of the isolation modes of dry transformers is relevant due to the need to improve the reliability and efficiency of modern power systems, as it allows to optimize their operational characteristics. In turn, modern software tools provide a detailed analysis of complex physical processes, which helps to reduce the cost of field experiments and improve the economic feasibility of the proposed solutions. Predicting the insulation life using numerical modeling and emergency prevention are critically important for maintaining the stability of the power supply. purpose. Development of a numerical model of a dry transformer. Conducting studies of the influence of various operating modes on the insulation condition of dry transformers.
METHODS. To achieve this goal, the method of numerical simulation of the operation of dry transformers was used, implemented in the COMSOL Multiphysics software environment. results. The results of the study demonstrate the possibility of predicting thermal and electrical processes in the insulation of dry transformers based on modern numerical models, which helps to extend the service life of the latter. The existing operating modes of transformers make it possible to optimize their parameters to increase operational efficiency, including reducing electrical losses. The simulation results show the relationship between the parameters of the dry transformer operating modes and the state of its insulation, which contributes to the timely detection and elimination of possible malfunctions. conclusion. As a result of the study, based on the developed numerical model, the existing operating modes of a transformer with dry insulation were analyzed, and their effects were investigated taking into account the heating temperature of the transformer windings.
About the Authors
R. N. BalobanovRussian Federation
Ruslan N. Balobanov
Kazan
V. M. Bulatova
Russian Federation
Venera M. Bulatova
Kazan
References
1. Kuz'min I., Shuvalov S. Zarubezhnyi opyt ekspluatatsii sukhikh silovykh transformatorov do 72, 5 kV //Elektroenergiya. Peredacha i raspredelenie. – 2019. – №. S4. – S. 14-17.
2. Gandymov A. M. Ekonomiya elektricheskoi energii za schet zameny transformatorov maslyanoi izolyatsiei na sukhie //Perspektivy razvitiya nauki v sovremennom mire. – 2021. – S. 60-64.
3. Varivodov V. N. i dr. Osobennosti primeneniya litoi epoksidnoi izolyatsii i kompozitsii na ee osnove dlya vysokovol'tnogo oborudovaniya //Elektrichestvo. – 2024. – №. 10. – S. 67-75.
4. Voronkina A. N., Myasoedova M. A. Kratkii obzor osnovnykh neispravnostei silovykh transformatorov v usloviyakh ekspluatatsii //Elektroenergetika segodnya i zavtra. – 2023. – S. 142-144.
5. Gromyko I. L., Mirosh D. V., Galushko V. N. Diagnostirovanie parametrov kachestva izolyatsii obmotok transformatorov pri ee uvlazhnenii. – 2022.
6. Vafin D. B., Shaikhiev I. M. Opyt zameny maslyanogo transformatora sukhim transformatorom v usloviyakh neftekhimicheskogo proizvodstva //Evraziiskoe Nauchnoe Ob"edinenie. – 2021. – №. 5-1. – S. 27-28.
7. Volchanina M. A., Kurmanov R. S., Kuznetsov A. A. Modelirovanie teplovykh kharakteristik silovogo transformatora pri peremennoi tokovoi nagruzke //Innovatsionnye proekty i tekhnologii v obrazovanii, promyshlennosti. – 2022. – S. 170.
8. Sarsenov A. U. Modelirovanie elektrodinamicheskikh i teplovykh rezhimov silovykh transformatorov dlya otsenki effektivnosti nadezhnosti ekspluatatsii //Energetika i energosberezhenie: teoriya i praktika. – 2020. – S. 254-1-254-4.
9. Bapfutvabo L., Kubarev A.Yu., Usachev A.E., Boboev Sh.A., Garifullin M.Sh. Issledovanie kharakteristik poverkhnostnykh chastichnykh razryadov na granitse razdela vozdukh/steklo mezhdu metallicheskimi elektrodami // Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. 2024. T. 16. № 3 (63). S. 35- 43.
10. Choudhary K. 3D modelling and finite element analysis of three phase transformer with integrated inductors in COMSOL Multiphysics. – 2020.
11. Khaleel D., Tang X., Abu-Zaher M. Advanced Simulation and Empirical Validation of HighEfficiency Induction Heating System Via COMSOL Multiphysics //2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia). – IEEE, 2024. – S. 2912-2917.
12. Basova A. V. et al. 2D&3D models for numerical calculation of electric fields in high-voltage transformers and reactors //Transformers Magazine. – 2024. – T. 11. – №. 1. – S. 92-104
13. Yin Q. et al. Analysis and Treatment of a Partial Discharge Fault in a 220kV Transformer //Journal of Physics: Conference Series. – IOP Publishing, 2024. – T. 2800. – №. 1. – S. 012020..
14. Yanjing Z. et al. Optimal Design of Dry-Type Air-Core Shunt Reactor Structure Based on Response Surface Method //Frontier Academic Forum of Electrical Engineering. – Springer, Singapore, 2025. – S. 605-613.
15. Larin V. S., Zenenko A. S., Fortal'nov S. A. Perenapryazheniya na izolyatsii neitrali sukhikh transformatorov pri impul'snykh ispytaniyakh //Elektrichestvo. – 2024. – №. 2. – S. 11-17.
16. Gusev O. Yu., Gusev Yu. P., Yuzhanin A. E. Otsenka termicheskoi stoikosti transformatora napryazheniya pri broske toka namagnichivaniya, vyzvannogo odnofaznym zamykaniem na zemlyu //Elektrichestvo. – 2024. – №. 8. – S. 36-41.
Review
For citations:
Balobanov R.N., Bulatova V.M. Analysis of the influence of operating modes of a dry transformer on the condition of its insulation. Power engineering: research, equipment, technology. 2025;27(1):70-87. (In Russ.) https://doi.org/10.30724/1998-9903-2025-27-1-70-87